




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
PAGE
AnswerstoWeaverendofchapterquestions
Chapter7Operons:FineControlofProkaryoticTranscription
SeeFigure7.1.Duringtheinitialphaseofgrowth,thebacteriaareusingglucoseasacarbonsource.Astheglucosesourceisexhausted,thereisalaginthegrowthoftheculturewhiletheexpressionofgenesencodingenzymesnecessaryforlactosemetabolismareinduced.Then,inthelatterphaseofgrowth,lactoseisbeingmetabolized.
Time
Celldensity
SeealsoFigure7.3fornegativeregulation.
NegativeRegulation
promoter
lacZ
lacA
lacY
operator
repressor
monomer
repressor
tetramer
X
Notranscription
-lactose
lacI
POL
Transcriptionproceeds
+lactose
Inducer
allolactose
promoter
lacZ
lacA
lacY
operator
CAP
transcription
proceeds
lowglucose
ATP
cAMP
catabolite
activator
protein,CAP
+
POL
PositiveRegulation
promoter
lacZ
lacA
lacY
operator
notranscription
highglucose
cAMP
catabolite
activator
protein,CAP
X
X
CAP
lacZ
lacA
lacY
operator
ATP
promoter
-galactosidaseisanenzymethathydrolyzesthe-galactosidicbondinthedissacharide,lactose,toyieldthesimplesugars,glucoseandgalactose.GalactosidepermeaseisanenzymeneededtotransportlactoseintotheE.colicell.
BothnegativeandpositivecontrolofthelacoperonenablesE.colitouseavailablecarbonsourceswiththemaximumefficiency.Inordertoactivatethelacoperon,twoenvironmentalconditionsmustbemet.Firstly,lactosemustbepresentandthenegativecontrolsystemofthelacoperonrequireslactoseforde-repression.Thisavoidsthecostofsynthesizingenzymestometabolizeacarbonsourcethatisnotpresent.Thesecondenvironmentalconditionthatmustbemetforexpressionofthegenesofthelacoperon,isthatglucosemustnotbepresent.Lowglucoselevelsactivateapositiveregulatorypathwaythatinducestheexpressionofthegenesrequiredforlactosemetabolism.Thisensuresthatifbothglucoseandlactoseareavailable,thebacteriawillutilizethemostefficientcarbonsource,i.e.glucose.
SeeFigures7.6and7.7.NitrocellulosefilterbindingassaysusinglabeledlacoperatorDNAandpurifiedrepressorprotein,canbeusedtodemonstratethatthelacoperatoristhesiteofbindingfortherepressorprotein.Intheseexperiments,labeledoperatorDNAisboundtoincreasingamountsofrepressorproteinandthemixtureispassedthroughanitrocellulosefilter.OnlyDNAboundtoproteinisretainedonthefilterandwewouldexpectthedatatoshowincreasedamountoflabeledDNAastherepressorconcentrationincreases.ThegraphbelowillustratestheexpectedincreaseinDNA–repressorcomplexesinthepresenceofincreasedrepressoranditalsoshowsthatastheDNAbecomeslimitingthecurveplateaus.Asacontrolinthisexperiment,wecantesttheabilityofthelacoperontobindrepressorinthepresenceofanartificialinducer(IPTG).Wewouldpredictthatinthepresenceoftheinducertherepressorwillbeunabletobindtotheoperator.Thepredictedresultsareshownonthefigurebelow.
LabeledDNA
retainedonthefilter
Repressorconcentration
-IPTG
+IPTG
Toverifythatitistheoperatortowhichtherepressorisbindingintheseexperiments,wecanuseamutant(Oc)operator,whoseconstitutiveactivitysuggeststhatithasareducedaffinityforrepressor.AsFigure7.7demonstrates,ittakesaconsiderablyhigherconcentrationofrepressortoreachmaximalbindingwiththemutantoperator.Thus,whatisdefinedgeneticallyastheoperatorisreallythebindingsiteforrepressor.
SeeFigure7.8.ThefollowingexperimentcanbeusedtoshowthatRNApolymerasecanbindtothelacpromotereveninthepresenceoftherepressor.WeincubateDNAcontainingthelacpromoterwithrepressorproteinandallowtherepressortobindtotheoperator.Wethenaddbothinducerandrifampicin.Rifampicininhibitstheprocessofopenpromoterformation,butdoesnotinhibittranscriptionfromalreadyformedopenpromotercomplexes.Wewouldpredictthatiftheformationofanopenpromotercomplexrequiresreleaseoftherepressorfromtheoperator,transcriptionwouldnotoccurwhenrifampicinwasaddedsincetheopenpromotercomplexwouldnotbeforminginthepresenceoftheantibiotic.If,however,theRNApolymerasewasalreadyboundinanopenpromotercomplexpriortothereleaseoftherepressor,thenrifampicinwillnotaffecttranscriptionwhenaddedwiththerepressorasdescribed.Insuchanexperimentwewouldexpecttoobservetranscriptionafteradditionofinducerandrifampicin,supportingthehypothesisthatRNApolymerasecanbindtothelacpromoterinthepresenceoftherepressor.ThisistheresultthatFigure7.8depicts.
SeeFigure7.9.InvitrokineticstudiescanbeusedtoshowthatthelacrepressorpreventsRNApolymerasefrombindingtothelacoperon.Insuchanexperiment,alacpromoterisincubatedwithRNApolymeraseinthepresenceofaUTPanalogwithafluorescentlytagged-phosphate.Thereleaseoffluorescentlytaggedpyrophosphatecanbeusedtocalculatetherateofabortivetranscription.Abortivetranscriptionisaresultofrepeatedbindingofapolymerasetoatemplateandgenerationofshortoligonucleotidefragments.Inanexperimentsuchasthis,ifweaddheparin,therateofformationofabortivetranscriptswilldecreasebecausetheheparinwillbindthepolymeraseasitisreleasedfromthetemplate.Wecanhypothesizethat,iftherepressorisinterferingwithpolymeraserebindingtothelacoperon,thenadditionofrepressortotheassaywillalsoresultinareductionintherateofabortivetranscriptformation.AsanegativecontrolwewouldperformtheassayintheabsenceofDNAtemplate.Thegraphbelowshowstheexpectedresults.Theslopeofthelinesgivesustherateofabortivetranscriptformationaftertheadditionofheparinandafteradditionofrepressor.Asexpected,heparincompeteswiththepromoterforbindingofthepolymeraseleadingtoadecreaseinabortivetranscriptformation.Similarly,theobserveddecreaseintherateofabortivetranscriptformationaftertheadditionofrepressorisconsistentwiththerepressor’sinterferingwithbindingofthepolymerasetothepromoter.
SeeFigure7.11.Studiesofmutantlacconstructsinwhichoneormoreoperatorshavebeenremovedhavebeenusedtodemonstratethatallthreelacoperatorsarerequiredforfullrepression.Műller-Hilletal.usedphagetointroducemutantconstructintoE.colistrainslackingalacZgene,andassayedthedegreeofrepressioninthelysogenicE.coli.Foldrepressioninthepresenceofeachintroducedgeneconstructwasmeasuredbycomparingthe–galactosidaseactivityinthepresenceandabsenceoftheinducerIPTG.Mutatingoneortheotheroftheauxiliaryoperatorsshowedlittleeffectonrepression.However,removalofbothauxiliaryoperatorsresultedina50-foldlossofrepression.
Aconvenientassaythatallowsustomeasurethestimulationof–galactosidaseactivitybyadditionofcAMP,wasdevelopedbyZubayandco-workers.AcellfreeextractofE.coliispreparedandthe–galactosidaseactivityintheextractcanbemeasuredaftertheadditionofdifferentamountsofcAMP.Astimulationofthe–galactosidaseactivityuponcAMPadditionisconsistentwiththepresenceofaprotein,CAP(cataboliteactivatorprotein),intheextractthatuponbindingtocAMPactivatesthelacoperon.E.colimutantsexistthathaveaCAPproteinwithareducedaffinityforcAMP.WecanusecellfreeextractsfromthesemutantE.coliandmeasurethe–galactosidaseactivityintheseextractsafteradditionofincreasingamountsofcAMP.Wewouldpredictthat,becauseofthemutantCAPpresentinthecellfreeextracts,wewouldobserveadecreasecAMPstimulated–galactosidaseactivity.Expecteddataareshowninthefigurebelow.
TheCAP-cAMPcomplexfunctionsinanumberofwaystoactivatetranscriptionfromthelacpromoter.First,CAP-cAMPindirectlystimulatestheformationofopenpromotercomplexes.Thisisbecauseitstimulatestheformationofclosedpromotercomplexeswhichincreasestheopportunityforopenpromotercomplexformation.CAP-cAMPalsoreducesinefficientinitiationoftranscriptionthatoccursatanalternativepromotersite,P2,withinthelacoperon.ThishastheeffectofincreasingtheavailabilityofRNApolymerasemoleculesforformingopenpromotercomplexesatP1,whichistheprimaryefficientpolymerase-bindingsite.Onceboundtotheactivator-bindingsiteupstreamofthepolymerase-bindingsite,CAP-cAMPinteractsdirectlywithRNApolymerase.Specifically,ActivatorRegionI(ARI)ofCAP-cAMPinteractswiththeCarboxy-terminaldomainofthe-subunitofRNApolymeraseI(-CTD)(Figure7.19).TheinteractionbetweenARIand-CTDleadstoco-operativebindingofRNApolymerasetothepromoter.Finally,CAP-cAMPbendsitstargetDNAuponbindingandthisstimulatestranscriptionbyfacilitatinginteractionswiththeRNApolymerase.
SeeFigure7.18.ThefollowingelectrophoresisexperimentcanbeusedtodemonstratethatbindingoftheCAP-cAMPcomplextothelacpromoterregionbendstheDNAmolecule.InsuchanexperimentwewouldtakeadvantageofthefactthataDNAfragmentthatisbentwillhavealowerelectrophoreticmobility.Thelocationofthebendaffectsthedegreeofretardationonagel.Inotherwords,twoproteinmoleculesofthesamesizeboundtothesamepieceofDNA,willdifferintheirmobilitybaseduponwherewithintheDNAmoleculetheproteinisbound.Aproteinboundinthecenterwillaffectthemobilitymorethanoneboundofftotheside.WecanuserestrictionenzymedigestiontogenerateDNAfragmentsofthesamesize,allofwhichcontaintheCAP-cAMPbindingsiteatadifferentbutknownlocation.WewouldthenbindtheCAP-cAMPcomplextotheDNAandwecanpredictwhichDNAfragmentwillhavethelowestmobility.WeexpectthatwhenthebindingsiteislocatedinthecenterofthefragmentthemobilitywillbelowestandinassaysusingtheconstructswiththebindingsiteoffcenterwewillseeadecreaseintheobservedretardationofmobilityasafunctionofitsdistancefromthecenteroftheDNAfragment.WewouldexpecttheDNAfragmentwiththelowestmobilitytohavetheCAP-cAMPbindingsiteatthecenteroftheDNAfragment,thussupportingthehypothesisthatbindingoftheCAP-cAMPcomplextothelacpromoterregionbendstheDNAmolecule.Figure7.18showsthatthisexpectationwasborneoutbyexperiment.
SeeFigure7.17.X-raycrystallographyhasbeenusedtoconfirmthepresenceofabendintheDNAmoleculeatthelacpromoterregioninresponsetobindingoftheCAP-cAMPcomplex.
SeeFigure7.20.RepressionofthearabinoseoperonrequiresbindingofAraCtoboththearaO2andthearaIsitesinthearaBADoperon.Thesetwobindingsitesareseparatedbyover200hundredbasepairsandloopingoutoftheinterveningDNAsequencesisrequiredtoallowtheseproteinstointeract.TheirinteractioniscontingentupontheirbeingalignedwitheachotheronthecorrectfaceoftheDNA.Inotherwords,aftertheloopisformedeachmustbeonasideofthehelixthatallowsthemtointeract.InsertionofaDNAfragmentthatintroducesoneormoreentirehelicalturnswillnotinterferewithprotein-proteininteractionsbecauseitwillnotaltertheirpositionsontheDNAfacerelativetoeachother.Ontheotherhand,ifanon-integralnumberofturnsareintroducedbetweenthetwoproteinbindingsitestheproteinswillfindthemselvesondifferentfacesoftheDNAafterformationoftheloop.Interactionbetweentheproteinscannotoccursincethehelixcannottwistaroundtoallowtheproteinstocontacteachother.Thediagrambelowillustratesthisphenomenon.OntheleftofthediagramanintegralnumberofDNAhelicalturnshavebeenintroducedbetweenthetwoproteinbindingsitesandontherightanon-integralnumberofturnshasbeenintroducedandconsequentlytheproteinsareunabletointeract.
SeeFigure7.21:
AraC+arabinose
AraC
SeeFigure7.23.InordertodemonstratethatarabinosecanbreaktherepressionloopformedbyAraC,wecanuseelectrophoresistodetecttheformationoftheloopinthepresenceandabsenceofarabinose.Todothisexperiment,wewouldprepare“minicircles”ofDNAofaround400basepairscontainingthearaO2andthearaIsitesseparatedby160basepairs.TodetectloopformationinthisconstructwecantakeadvantageofthefactthattheformationofaloopinasupercoiledpieceofDNAwillincreaseitselectrophoreticmobility.Wewouldthenlabeltheseminicirclesandincubatetheminthepresenceandabsenceofarabinose.WewouldthenelectrophoresetheDNAandweexpecttoseeanincreaseinthemobilityoftheDNAintheabsenceofarabinoseduetothepresenceoftherepressionloop.However,inthesamplewitharabinosewewillseelowermobilityoftheDNAbecausethearabinosehasinhibitedrepressionloopformation
SeeFigure7.22,TodemonstratethatbotharaO2andaraIareinvolvedinformingtherepressionloopwecanuseminicircleassaysusingmutantconstructs.Theprinciplebehindtheseexperimentsisasfollows.IfthestabilityoftherepressionlooprequiresbindingofAraCtobotharaO2andaraI,disruptingthebindingofAraCtoeitherofthesesitesbymeansofamutationintheDNAsequencewillreducethestabilityoftherepressionloop.Wewouldsetuptheexperimentinthefollowingmanner.WewouldbindAraCtolabeledminicirclescontainingeitherwild-typebindingsites,orbindingsitescarryingamutationateitheraraO2oratbotharaIbindingsites.Thenwewouldaddunlabeledwild-typeminicircles,performelectrophoresis,andmeasurethetimeittakesforhalfoftherepressionloopstodissociate.Wecanmeasurelossofthelabeledrepressionloopsbylookingfordecreaseinmobilityonagel.Themorerapidlythecomplexesdissociate,thelessstabletherepressionloop.WeexpecttoobservethatminicircleswithmutationsineitheraraO2orintheara1bindingsitesaremorereadilyconvertedtounloopedcirclesthanarethewild-typeminicircles.FromthiswecaninferthebothofaraO2andariIarerequiredforrepressionloopformation.
SeeFigure7.24.Todemonstratethatremovingarabinosefromrepressionloopsallowsthemtoreform,wewouldperformthefollowingexperiment.Wewouldgeneraterepressionloopsasdescribedaboveandwewouldaddarabinosetoasubsetofthereactionspriortoelectrophoresis.WewillobserveloweredmobilityoftheDNAcomplexreflectingbreakdownoftherepressionloops.Ifwethentaketheremainingreactionmixtureanddiluteitwithbuffer,wewillbeeffectivelydecreasingtheconcentrationofarabinoseandwewillobservereformationoftherepressionloopsuponelectrophoresis.
TwoexperimentsareneededtodemonstratethataraI2isimportantinbindingAraCwhentheDNAisintheunloopedformbutnotinloopedform.Thefirstexperimentwesetupwouldusemethylationinterference.TheprinciplebehindthisapproachisthatregionsoftheDNAthatbindAraCandthatareimportantforloopingwillbeinhibitedfromloopingwhentheyaremethylated.Therefore,inapartiallymethylatedsetofDNAmoleculesthatwereloopedaftermethylation,wewouldexpectonlytheDNAthatisunmethylatedincriticalregionstobelooped.ToperformthisexperimentwewouldpartiallymethylateminicircleDNAsuchthatonaverageonlyonebaseorasmallnumberofbasespermoleculeweremethylated.WewouldthenaddAraCtolooptheDNAandseparatetheloopedDNAfromtheunloopedDNA.IfaregionofDNAwereresponsibleforloopingwhenitboundAraCwehaveeffectivelyselectedagainstmoleculesmethylatedatthisregionandwewouldexpecttoonlyfindloopedmoleculesthatwerenotmethylatedatthissite.Ifweanalyzethemethylationpatternsoftheloopedmoleculesafterthispartoftheexperiment,weexpecttofindaraI1basesthatareheavilymethylatedintheunloopedDNAbutunmethylatedintheloopedDNA.However,whenwelookatthemethylationinthearaI2regionofloopedandunloopedDNAwewillfindmethylatedDNAinbothsamplesindicatingtheAraCdoesnotcontactaraI2intheloopedstate.Wewouldsetupasecondexperiment(Figure7.25)todemonstratethatara12isimportantinbindingAraCwhentheDNAisintheunloopedstate.Thetoolsforthisexperimentaregelshiftassaysusingbothwild-typeandmutantaraI2minicircles.InthisexperimentwewouldfirstbindAraCtobothwild-typeandmutantaraI2minicircles.WewouldthenbreaktheloopandlinearizethecircleswitharestrictionenzymeanddetermineifAraCisboundtothemutantandthewild-typearaI2.WeexpecttoseealossofbindingintheminicirclewiththemutantaraI2site.ThistellsusthataraI2isnecessaryforbindingAraCintheunloopedstate.
SeeFigure7.27.ThegenesofthetrpoperoninE.colicellsareinactivatedinresponsetoabundanttryptophan.Amodelforthisnegativecontrolmechanismisasfollows.Anaporepressormonomerexistsinthecellandithasnoaffinityforthetrpoperonunlessitisassociatedwithacorepressor.Thecorepressoristryptophan,anditsassociationwiththeaporepressorresultsinanallostericchangeallowingtheformationofanactiverepressorcomplex.Thiscomplexbindsthetrpoperatorasadimer,repressingexpressionofthetrpstructuralgenes.Thus,whentryptophanisabundantinthecell,thegenesofthetrpoperonarerepressedandwhenitisscarce,theoperonisreleasedfromrepression.
SeeFigures7.28and7.29.Attenuationinthetrpoperonisfacilitatedbyanattenuatorwithinaleadersequenceupstreamofthefirststructuralgeneinthetrpoperon.TheattenuatoriscomposedofaninvertedrepeatintheDNAsequence,followedbyastringofT’sinthenon-templatestrand.Inthepresenceoftryptophan,theRNAmoleculeformsahairpinloopbecauseoftheself-complementarityoftheinvertedrepeats.ThetractofU’s,whichmakeunstableUAbasepairswiththetemplate,combinewiththehairpinlooptomakethetranscript/templatehybridunstable.Thisresultsinterminationoftranscriptionandreleaseofthetranscript.
Translationofthetrpleaderregiondoesnotcontinueintothetrpstructuralgenesbecausethereisatranslationterminationsequenceattheendofthetrpleadersequence.
SeeFigure7.32.Whentryptophanisscarce,attenuationofthetrpoperoncanbeoverridden,allowingexpressionofthestructuralgenesintheoperon.InspectionoftheDNAsequencesintheleadersequencerevealssomefeaturesthatarekeytothecapacityofRNApolymerasetobypasstheattenuationsequencewhentryptophanlevelswithinthecellarelow.WithintheleadersequencethereareinfacttwoinvertedrepeatsthatwillresultinRNAcontainingtworegionscapableofhairpinloopformation.ThesecondordownstreamhairpinloopisassociatedwithatractofU’s.Thisisthefunctionalattenuator.ThefirstorupstreamhairpinloopdoesnothavetheoligoUtractassociatedwithitanditdoesnotfunctionasanattenuator.Theleadersequencecanformacompositehairpinloopusingasinglerepeatfromeachofthetwohairpinloops.ThisalternativehairpinisnotassociatedwithapolyUtractandthereforewillnotleadtoattenuation.Formationofthisalternativehairpinloopprohibitstheformationofthedownstreamhairpinloopthatisneededforattenuation.Alternativehairpinloopformationisfavoredwhentheribosomestallsattwotryptophancodonsupstreamoftheinvertedrepeats.Thisstallingoccursundersituationswheretryptophanconcentrationsarelow.Thus,whentryptophanislimiting,transcriptioncanproceedthroughtothestructuralgenes.
SeeFigure7.33.AriboswitchisaregionofRNAsequencewithinthe5’UTRofanmRNAthatcontrolsthesynthesisortranslationofthatRNA.Thisisachievedbythebindingofasmallmolecule,orligand,toaspecificregionoftheriboswitchcalledanaptamer.AnexampleistheribDoperonofBaccillussubtilus.Aconservedelement,theRFNelement,bindsFlavinMononucleotide(FMN)aproductoftheribDoperon.ItisbelievedthatbindingofFMNtotheaptamercausesaconformationalchangeintheelement,resultingintheformationofaterminator.Inthiswaytheproductoftheoperonswitchesoffitsownproduction.
In-lineprobingisatechniquethatallowsustoprobethestructureofanRNAmolecule.SpontaneouscleavageofRNAmoleculesoccursmorereadilyintheabsenceofsecondarystructure.Thisisbecausehydrolysisneedsa180arrangementbetweentheattackingnucleophileanditssubstrate,andsuchanarrangementispreventedinbase-pairedregionsofanRNA.Thisallowsustovisualizechangesinthesecondarystructurethatmayoccuruponbindingofaligandtoitsaptamer.SeparatingthecleavedfragmentsonagelandobservingafootprintontheautoradiographallowsvisualizationofanyregionoftheRNAthatislesssusceptibletocleavage.ThisisanalogoustoafootprintwewouldobserveinaDNasefootprintingexperiment.Todoanin-lineprobingexperiment,anRNAfragmentcontainingtheaptamerislabeledandthenincubatedinthepresenceandabsenceofitsligand.Spontaneouscleavagepatternareobservedbyelectrophoresisandautoradiography.AsetoffragmentsontheautoradiographthataremissingonlyinthepresenceofligandsuggeststhattheligandisboundtothissiteintheRNAinducingachangeinitssecondarystructure.
AnalyticalQuestions
phenotypeminusinducer
phenotypeplusinducer
Explanation
a
-
+
Allthegenesarewild-typethereforewild-typefunctionispresentand-galactosidaseisproduceduponinductiononly.
b
-
+
TheZ-mutantalleleisrecessivetotheZ+allele.Theenzymeproducedbythewild-typegeneissufficienttogiveawild-typephenotype.
c
-
+
TheI-mutantalleleisrecessivetotheI+allele.Therepressorproteinproducedbythewild-typeallelewillbesufficienttobindtheoperatorinbothgenes.Inotherwords,themutationwillbecomplementedintransbythesinglewild-typeallele.
d
-
-
TheIsmutantalleleisdominantovertotheI+allele.RepressorproteinsproducedfromtheIsareunabletobindtheinducerandthuscannotbereleasedfromtheoperator.Therepressorproducedinthemerodiploidwillcontainsubunitsfromthemutantalleleaswellasthewild-type.Thiswillrenderthetetramernon-functionalanditwillbepermanentlyassociatedwiththeoperator.
e
+
+
TheOcmutantalleleisdominantovertotheO+allele.Themutantoperatorisunabletobindrepressorproteinandwillthereforeconstitutivelyproduce-galactosidaseproteininitsoperonregardlessofthepresenceofabsenceofinducer.
f
-
+
SincetheOcmutationisinthepromotercontrollingexpressionofamutantlacZgene,themutationinthelacZgenegeneis“cancelingout”theOcmutation.TheZ-alleleisepistaticontheOcallele.
g
+
+
SincetheOcmutationrendersthepromoterincapableofbindingtherepressor,it“cancelsout”thephenotypeoftheIsallelewhichproducesrepressorthatisunabletobindtheinducer.TheOcalleleisepistaticontheIsalleleandthisoperatorwilldriveconstitutiveexpressionofthe-galactosidasegene.Thewild-typeoperatorwillalsonotbedepressiblebecausetheIsalleleisdominantovertheI+alleleforthereasonsexplainedind.above.However,sincetheothercopyofthelacZgeneisproducing-galactosidaseconstitutivelytherewillbe-galactosidaseproducedinthepresenceoftheinducer.
(a)Becausethephenotypeofmutantstrain#1isconstitutive(noinducerneededforactivity),itsgenotypemustcarryamutationineithertheIortheOgene,i.eI-orOc.Therefore,C(themutantgeneinstrain#1)iseitherIorO.Mutant#2isalsoconstitutive,soitsgenotypeisalsoeitherI-orOc.Therefore,AiseitherIorO.SofarweknowthatAandCareIandO,butnotnecessarilyinthatorder.ThismeansthatBmustcorrespondtoZ,byelimination.NowweneedtodeterminewhetherA=IandC=O,orvice-versa.ThephenotypeofMutant#3givestheanswer.Becauseitisconstitutiveandthemutantformisdominant,C-mustbeOc.IfitwereI-,theotherconstitutivepossibility,themutationwouldhavebeenrecessive,andno-galactosidasewouldhavebeenproducedintheabsenceofinducer.ThusA=I,B=Z,andC=O.
(b)Thepartialdiploidinline4failstomake-galactosidaseeveninthepresenceofinducer.Thatis,themutation(A-)isdominant,andA-mustthereforebeIs.Ontheotherhand,thephenotypeofthestraininline5isthesameasthatofawild-typestrain.Therefore,themutation(A-)inthegenotypeofthestrainshowninline5mustberecessive,i.e.A-=I-.Therefore,thetwogenotypesare:
IsO+Z+/I+O+Z+
I-O+Z+/I+O+Z+
E.colicellswithamutantlacoperatorthatisunabletobindtherepressor,willexpressthegenesfromthelacoperonconstitutively.Inotherwords,thegeneswillbeexpressedinthepresenceandabsenceoflactose.
E.colicellswithamutantlacrepressorthatcannotbindtothelacoperatorwillexpressthegenesfromthelacoperonconstitutively.Inotherwords,thegeneswillbeexpressedinthepresenceandabsenceoflactose.
E.colicellswithamutantlacrepressorthatcannotbindtoallolactosewillbeu
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025商场店铺装修设计合同书样本参考
- 2025河南省企业借款合同
- 2025授权代理租赁合同范本
- 2025深圳市特许经营合同
- 2025商务代理合同 代理合同
- 高压胶管采购合同协议
- 店铺装修改造合同协议
- 合同法中遗赠协议
- 专用装载机租赁合同协议
- 7人合伙投资合同协议
- 林业种植工作总结
- 幼儿园园长专题讲座艺术创造与审美观培养
- 何威新书《吵出好婚姻》一场重构亲密关系冒险之旅
- 第7课《珍视亲情+学会感恩》第2框《理解父母+学会感恩》【中职专用】《心理健康与职业生涯》(高教版2023基础模块)
- 无人机驾驶员培训计划及大纲
- 自费药品知情同意书
- 江苏省书法水平等级证书考试-硬笔书法考试专用纸-(123级)
- 山东省各地市地图课件
- 全套IATF16949内审核检查表(含审核记录)
- 基础工程量计算表
- 设备报修单表
评论
0/150
提交评论