版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届鲍沟中学中考数学适应性模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(共10小题,每小题3分,共30分)1.如图,AB为⊙O的直径,C、D为⊙O上的点,若AC=CD=DB,则cos∠CAD=()A. B. C. D.2.若二次函数的图象经过点(﹣1,0),则方程的解为()A., B., C., D.,3.如图,AB与⊙O相切于点A,BO与⊙O相交于点C,点D是优弧AC上一点,∠CDA=27°,则∠B的大小是()A.27° B.34° C.36° D.54°4.下列各数中最小的是()A.0 B.1 C.﹣ D.﹣π5.如果关于x的一元二次方程k2x2-(2k+1)x+1=0有两个不相等的实数根,那么k的取值范围是()A.k>- B.k>-且 C.k<- D.k-且6.甲、乙两人沿相同的路线由A地到B地匀速前进,A、B两地间的路程为40km.他们前进的路程为s(km),甲出发后的时间为t(h),甲、乙前进的路程与时间的函数图象如图所示.根据图象信息,下列说法不正确的是()A.甲的速度是10km/h B.乙的速度是20km/hC.乙出发h后与甲相遇 D.甲比乙晚到B地2h7.若关于x的不等式组只有5个整数解,则a的取值范围()A. B. C. D.8.若,,则的值是()A.2 B.﹣2 C.4 D.﹣49.计算36÷(﹣6)的结果等于()A.﹣6 B.﹣9 C.﹣30 D.610.如图,AB是一垂直于水平面的建筑物,某同学从建筑物底端B出发,先沿水平方向向右行走20米到达点C,再经过一段坡度(或坡比)为i=1:0.75、坡长为10米的斜坡CD到达点D,然后再沿水平方向向右行走40米到达点E(A,B,C,D,E均在同一平面内).在E处测得建筑物顶端A的仰角为24°,则建筑物AB的高度约为(参考数据:sin24°≈0.41,cos24°≈0.91,tan24°=0.45)()A.21.7米 B.22.4米 C.27.4米 D.28.8米二、填空题(本大题共6个小题,每小题3分,共18分)11.如图,等边三角形ABC内接于⊙O,若⊙O的半径为2,则图中阴影部分的面积等于_______.12.如图,以锐角△ABC的边AB为直径作⊙O,分别交AC,BC于E、D两点,若AC=14,CD=4,7sinC=3tanB,则BD=_____.13.因式分解:2x14.如图,AB是⊙O的弦,∠OAB=30°.OC⊥OA,交AB于点C,若OC=6,则AB的长等于__.15.如图是一位同学设计的用手电筒来测量某古城墙高度的示意图.点P处放一水平的平面镜,光线从点A出发经平面镜反射后刚好到古城墙CD的顶端C处,已知AB⊥BD,CD⊥BD,测得AB=2米,BP=3米,PD=15米,那么该古城墙的高度CD是_____米.16.一个圆锥的母线长15CM.高为9CM.则侧面展开图的圆心角________。三、解答题(共8题,共72分)17.(8分)某超市对今年“元旦”期间销售A、B、C三种品牌的绿色鸡蛋情况进行了统计,并绘制如图所示的扇形统计图和条形统计图.根据图中信息解答下列问题:(1)该超市“元旦”期间共销售个绿色鸡蛋,A品牌绿色鸡蛋在扇形统计图中所对应的扇形圆心角是度;(2)补全条形统计图;(3)如果该超市的另一分店在“元旦”期间共销售这三种品牌的绿色鸡蛋1500个,请你估计这个分店销售的B种品牌的绿色鸡蛋的个数?18.(8分)如图,在△ABC中,AB=AC,以AB为直径作半圆⊙O,交BC于点D,连接AD.过点D作DE⊥AC,垂足为点E.求证:DE是⊙O的切线;当⊙O半径为3,CE=2时,求BD长.19.(8分)如图,在△ABC中,∠ACB=90°,O是AB上一点,以OA为半径的⊙O与BC相切于点D,与AB交于点E,连接ED并延长交AC的延长线于点F.(1)求证:AE=AF;(2)若DE=3,sin∠BDE=,求AC的长.20.(8分)下表给出A、B、C三种上宽带网的收费方式:收费方式月使用费/元包时上网时间/h超时费/(元/min)A30250.05B50500.05C120不限时设上网时间为t小时.(I)根据题意,填写下表:月费/元上网时间/h超时费/(元)总费用/(元)方式A3040方式B50100(II)设选择方式A方案的费用为y1元,选择方式B方案的费用为y2元,分别写出y1、y2与t的数量关系式;(III)当75<t<100时,你认为选用A、B、C哪种计费方式省钱(直接写出结果即可)?21.(8分)十八届五中全会出台了全面实施一对夫妇可生育两个孩子的政策,这是党中央站在中华民族长远发展的战略高度作出的促进人口长期均衡发展的重大举措.二孩政策出台后,某家庭积极响应政府号召,准备生育两个小孩(假设生男生女机会均等,且与顺序无关).(1)该家庭生育两胎,假设每胎都生育一个小孩,求这两个小孩恰好都是女孩的概率;(2)该家庭生育两胎,假设第一胎生育一个小孩,且第二胎生育一对双胞胎,求这三个小孩中恰好是2女1男的概率.22.(10分)已知△ABC在平面直角坐标系中的位置如图所示.分别写出图中点A和点C的坐标;画出△ABC绕点C按顺时针方向旋转90°后的△A′B′C′;求点A旋转到点A′所经过的路线长(结果保留π).23.(12分)已知⊙O的直径为10,点A,点B,点C在⊙O上,∠CAB的平分线交⊙O于点D.(I)如图①,若BC为⊙O的直径,求BD、CD的长;(II)如图②,若∠CAB=60°,求BD、BC的长.24.(1)解方程组(2)若点是平面直角坐标系中坐标轴上的点,(1)中的解分别为点的横、纵坐标,求的最小值及取得最小值时点的坐标.
参考答案一、选择题(共10小题,每小题3分,共30分)1、D【解题分析】
根据圆心角,弧,弦的关系定理可以得出===,根据圆心角和圆周角的关键即可求出的度数,进而求出它的余弦值.【题目详解】解:===,故选D.【题目点拨】本题考查圆心角,弧,弦,圆周角的关系,熟记特殊角的三角函数值是解题的关键.2、C【解题分析】
∵二次函数的图象经过点(﹣1,0),∴方程一定有一个解为:x=﹣1,∵抛物线的对称轴为:直线x=1,∴二次函数的图象与x轴的另一个交点为:(3,0),∴方程的解为:,.故选C.考点:抛物线与x轴的交点.3、C【解题分析】
由切线的性质可知∠OAB=90°,由圆周角定理可知∠BOA=54°,根据直角三角形两锐角互余可知∠B=36°.【题目详解】解:∵AB与⊙O相切于点A,
∴OA⊥BA.
∴∠OAB=90°.
∵∠CDA=27°,
∴∠BOA=54°.
∴∠B=90°-54°=36°.故选C.考点:切线的性质.4、D【解题分析】
根据任意两个实数都可以比较大小.正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小即可判断.【题目详解】﹣π<﹣<0<1.则最小的数是﹣π.故选:D.【题目点拨】本题考查了实数大小的比较,理解任意两个实数都可以比较大小.正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小是关键.5、B【解题分析】
在与一元二次方程有关的求值问题中,必须满足下列条件:(1)二次项系数不为零;(2)在有两个实数根下必须满足△=b2-4ac≥1.【题目详解】由题意知,k≠1,方程有两个不相等的实数根,所以△>1,△=b2-4ac=(2k+1)2-4k2=4k+1>1.因此可求得k>且k≠1.故选B.【题目点拨】本题考查根据根的情况求参数,熟记判别式与根的关系是解题的关键.6、B【解题分析】由图可知,甲用4小时走完全程40km,可得速度为10km/h;乙比甲晚出发一小时,用1小时走完全程,可得速度为40km/h.故选B7、A【解题分析】
分别解两个不等式得到得x<20和x>3-2a,由于不等式组只有5个整数解,则不等式组的解集为3-2a<x<20,且整数解为15、16、17、18、19,得到14≤3-2a<15,然后再解关于a的不等式组即可.【题目详解】解①得x<20
解②得x>3-2a,
∵不等式组只有5个整数解,
∴不等式组的解集为3-2a<x<20,
∴14≤3-2a<15,故选:A【题目点拨】本题主要考查对不等式的性质,解一元一次不等式,一元一次不等式组的整数解等知识点的理解和掌握,能求出不等式14≤3-2a<15是解此题的关键.8、D【解题分析】因为,所以,因为,故选D.9、A【解题分析】分析:根据有理数的除法法则计算可得.详解:31÷(﹣1)=﹣(31÷1)=﹣1.故选A.点睛:本题主要考查了有理数的除法,解题的关键是掌握有理数的除法法则:两数相除,同号得正,异号得负,并把绝对值相除.2除以任何一个不等于2的数,都得2.10、A【解题分析】
作BM⊥ED交ED的延长线于M,CN⊥DM于N.首先解直角三角形Rt△CDN,求出CN,DN,再根据tan24°=,构建方程即可解决问题.【题目详解】作BM⊥ED交ED的延长线于M,CN⊥DM于N.在Rt△CDN中,∵,设CN=4k,DN=3k,∴CD=10,∴(3k)2+(4k)2=100,∴k=2,∴CN=8,DN=6,∵四边形BMNC是矩形,∴BM=CN=8,BC=MN=20,EM=MN+DN+DE=66,在Rt△AEM中,tan24°=,∴0.45=,∴AB=21.7(米),故选A.【题目点拨】本题考查的是解直角三角形的应用-仰角俯角问题,根据题意作出辅助线,构造出直角三角形是解答此题的关键.二、填空题(本大题共6个小题,每小题3分,共18分)11、【解题分析】
分析:题图中阴影部分为弓形与三角形的和,因此求出扇形AOC的面积即可,所以关键是求圆心角的度数.本题考查组合图形的求法.扇形面积公式等.详解:连结OC,∵△ABC为正三角形,∴∠AOC==120°,∵,∴图中阴影部分的面积等于∴S扇形AOC=即S阴影=cm2.故答案为.点睛:本题考查了等边三角形性质,扇形的面积,三角形的面积等知识点的应用,关键是求出∠AOC的度数,主要考查学生综合运用定理进行推理和计算的能力.12、1【解题分析】如图,连接AD,根据圆周角定理可得AD⊥BC.在Rt△ADC中,sinC=ADAC;在Rt△ABD中,tanB=ADBD.已知7sinC=3tanB,所以7×ADAC=3×ADBD,又因点睛:此题主要考查的是圆周角定理和锐角三角函数的定义,以公共边AD为桥梁,利用锐角三角函数的定义得到tanB和sinC的式子是解决问题的关键.13、2(x+3)(x﹣3).【解题分析】试题分析:先提公因式2后,再利用平方差公式分解即可,即2x2-18考点:因式分解.14、18【解题分析】连接OB,∵OA=OB,∴∠B=∠A=30°,∵∠COA=90°,∴AC=2OC=2×6=12,∠ACO=60°,∵∠ACO=∠B+∠BOC,∴∠BOC=∠ACO-∠B=30°,∴∠BOC=∠B,∴CB=OC=6,∴AB=AC+BC=18,故答案为18.15、10【解题分析】
首先证明△ABP∽△CDP,可得=,再代入相应数据可得答案.【题目详解】如图,由题意可得:∠APE=∠CPE,∴∠APB=∠CPD,∵AB⊥BD,CD⊥BD,∴∠ABP=∠CDP=90°,∴△ABP∽△CDP,∴=,∵AB=2米,BP=3米,PD=15米,∴=,解得:CD=10米.故答案为10.【题目点拨】本题考查了相似三角形的应用,解题的关键是熟练的掌握相似三角形的应用.16、288°【解题分析】
母线长为15cm,高为9cm,由勾股定理可得圆锥的底面半径;由底面周长与扇形的弧长相等求得圆心角.【题目详解】解:如图所示,在Rt△SOA中,SO=9,SA=15;则:设侧面属开图扇形的国心角度数为n,则由得n=288°故答案为:288°.【题目点拨】本题利用了勾股定理,弧长公式,圆的周长公式和扇形面积公式求解.三、解答题(共8题,共72分)17、(1)2400,60;(2)见解析;(3)500【解题分析】整体分析:(1)由C品牌1200个占总数的50%可得鸡蛋的数量,用A品牌占总数的百分比乘以360°即可;(2)计算出B品牌的数量;(3)用B品牌与总数的比乘以1500.解:(1)共销售绿色鸡蛋:1200÷50%=2400个,A品牌所占的圆心角:×360°=60°;故答案为2400,60;(2)B品牌鸡蛋的数量为:2400﹣400﹣1200=800个,补全统计图如图:(3)分店销售的B种品牌的绿色鸡蛋为:×1500=500个.18、(1)证明见解析;(2)BD=2.【解题分析】
(1)连接OD,AB为⊙0的直径得∠ADB=90°,由AB=AC,根据等腰三角形性质得AD平分BC,即DB=DC,则OD为△ABC的中位线,所以OD∥AC,而DE⊥AC,则OD⊥DE,然后根据切线的判定方法即可得到结论;
(2)由∠B=∠C,∠CED=∠BDA=90°,得出△DEC∽△ADB,得出,从而求得BD•CD=AB•CE,由BD=CD,即可求得BD2=AB•CE,然后代入数据即可得到结果.【题目详解】(1)证明:连接OD,如图,∵AB为⊙0的直径,∴∠ADB=90°,∴AD⊥BC,∵AB=AC,∴AD平分BC,即DB=DC,∵OA=OB,∴OD为△ABC的中位线,∴OD∥AC,∵DE⊥AC,∴OD⊥DE,∴DE是⊙0的切线;(2)∵∠B=∠C,∠CED=∠BDA=90°,∴△DEC∽△ADB,∴,∴BD•CD=AB•CE,∵BD=CD,∴BD2=AB•CE,∵⊙O半径为3,CE=2,∴BD==2.【题目点拨】本题考查了切线的判定定理:过半径的外端点且与半径垂直的直线为圆的切线.也考查了等腰三角形的性质、三角形相似的判定和性质.19、(1)证明见解析;(2)1.【解题分析】
(1)根据切线的性质和平行线的性质解答即可;(2)根据直角三角形的性质和三角函数解答即可.【题目详解】(1)连接OD,∵OD=OE,∴∠ODE=∠OED.∵直线BC为⊙O的切线,∴OD⊥BC.∴∠ODB=90°.∵∠ACB=90°,∴OD∥AC.∴∠ODE=∠F.∴∠OED=∠F.∴AE=AF;(2)连接AD,∵AE是⊙O的直径,∴∠ADE=90°,∵AE=AF,∴DF=DE=3,∵∠ACB=90°,∴∠DAF+∠F=90°,∠CDF+∠F=90°,∴∠DAF=∠CDF=∠BDE,在Rt△ADF中,=sin∠DAF=sin∠BDE=,∴AF=3DF=9,在Rt△CDF中,=sin∠CDF=sin∠BDE=,∴CF=DF=1,∴AC=AF﹣CF=1.【题目点拨】本题考查了切线的性质,解直角三角形的应用,等腰三角形的判定等,综合性较强,正确添加辅助线、熟练掌握和灵活运用相关知识是解题的关键.20、(I)见解析;(II)见解析;(III)见解析.【解题分析】
(I)根据两种方式的收费标准分别计算,填表即可;(II)根据表中给出A,B两种上宽带网的收费方式,分别写出y1、y2与t的数量关系式即可;(III)计算出三种方式在此取值范围的收费情况,然后比较即可得出答案.【题目详解】(I)当t=40h时,方式A超时费:0.05×60(40﹣25)=45,总费用:30+45=75,当t=100h时,方式B超时费:0.05×60(100﹣50)=150,总费用:50+150=200,填表如下:月费/元上网时间/h超时费/(元)总费用/(元)方式A30404575方式B50100150200(II)当0≤t≤25时,y1=30,当t>25时,y1=30+0.05×60(t﹣25)=3t﹣45,所以y1=;当0≤t≤50时,y2=50,当t>50时,y2=50+0.05×60(t﹣50)=3t﹣100,所以y2=;(III)当75<t<100时,选用C种计费方式省钱.理由如下:当75<t<100时,y1=3t﹣45,y2=3t﹣100,y3=120,当t=75时,y1=180,y2=125,y3=120,所以当75<t<100时,选用C种计费方式省钱.【题目点拨】本题考查了一次函数的应用,解答时理解三种上宽带网的收费标准进而求出函数的解析式是解题的关键.21、(1)P(两个小孩都是女孩)=;(2)P(三个小孩中恰好是2女1男)=.【解题分析】
(1)画出树状图即可解题,(2)画出树状图即可解题.【题目详解】(1)画树状图如下:由树状图可知,生育两胎共有4种等可能结果,而这两个小孩恰好都是女孩的有1种可能,∴P(两个小孩都是女孩)=.(2)画树状图如下:由树状图可知,生育两胎共有8种等可能结果,其中这三个小孩中恰好是2女1男的有3种结果,∴P(三个小孩中恰好是2女1男)=.【题目点拨】本题考查了画树状图求解概率,中等难度,画出树状图找到所有可能性是解题关键.22、(1)、(2)见解析(3)【解题分析】试题分析:(1)根据点的平面直角
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年新型城镇化项目宣传策划与广告制作合同3篇
- 二零二五年度数字经济产业园运营管理合同3篇
- 二零二五年酒店客房服务质量监督单位合同范本3篇
- 二零二五年度电梯设备采购与安装一体化服务合同3篇
- 二零二五年路灯照明产品研发、生产、销售及售后服务合同5篇
- 二零二五年高端房地产抵押租赁合同模板3篇
- 二零二五版体育产业贷款合同与信用额度授信协议3篇
- 二零二五版昆明公租房电子合同租赁合同解除与终止流程3篇
- 二零二五年度简单终止劳动合同协议规范劳动合同解除2篇
- 2025年彩钢建筑一体化解决方案承包合同3篇
- NGS二代测序培训
- 《材料合成与制备技术》课程教学大纲(材料化学专业)
- 小红书食用农产品承诺书示例
- 钉钉OA办公系统操作流程培训
- 新生儿科年度护理质控总结
- GB/T 15934-2024电器附件电线组件和互连电线组件
- 《工贸企业有限空间作业安全规定》知识培训
- 高层次人才座谈会发言稿
- 垃圾清运公司管理制度(人员、车辆、质量监督、会计管理制度)
- 《建筑工程设计文件编制深度规定》(2022年版)
- 营销人员薪酬考核方案
评论
0/150
提交评论