版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
【课标要求】1.掌握数学归纳法的实质及归纳与猜想的关系.2.能运用数学归纳法解决实际问题.【核心扫描】1.数学归纳法与函数、数列、不等式及几何问题相结合.(重点)2.能通过“归纳—猜想—证明”解决一些数学问题.(难点)第一页第二页,共35页。自学导引数学归纳法用框图表示就是:第二页第三页,共35页。想一想:数学归纳法的两个步骤有何关系?
提示使用数学归纳法时,两个步骤缺一不可,步骤(1)是递推的基础,步骤(2)是递推的依据.第三页第四页,共35页。名师点睛1.数学归纳法在证明与正整数n有关的等式、不等式、整除问题及数列问题中有广泛的应用.2.归纳→猜想→证明
(1)归纳、猜想和证明是人们探索事物发展规律的常用方法,在数学中是我们分析问题、解决问题的一个重要的数学思想方法.
(2)在归纳、猜想阶段体现的是一般与特殊的相互转化关系.
(3)在数学归纳法证明阶段体现的是有限和无限的转化,是一种极限的思想.第四页第五页,共35页。第五页第六页,共35页。第六页第七页,共35页。
用数学归纳法证明不等式时常要用到放缩法,即在归纳假设的基础上,通过放大或缩小等技巧变换出要证明的目标不等式.第七页第八页,共35页。第八页第九页,共35页。第九页第十页,共35页。第十页第十一页,共35页。证明①当n=1时,f(1)=(2×1+7)×3+9=36,能被36整除.②假设n=k时,f(k)能被36整除,即(2k+7)·3k+9能被36整除,则当n=k+1时,f(k+1)=[2(k+1)+7]·3k+1+9=3[(2k+7)·3k+9]+18(3k-1-1),由归纳假设3[(2k+7)·3k+9]能被36整除,而3k-1-1是偶数,所以18(3k-1-1)能被36整除,所以f(k+1)能被36整除.由①②可知,对任意的n∈N+,f(n)能被36整除.第十一页第十二页,共35页。卡盟
卡盟MicrosoftOfficePowerPoint,是微软公司的演示文稿软件。用户可以在投影仪或者计算机上进行演示,也可以将演示文稿打印出来,制作成胶片,以便应用到更广泛的领域中。利用MicrosoftOfficePowerPoint不仅可以创建演示文稿,还可以在互联网上召开面对面会议、远程会议或在网上给观众展示演示文稿。MicrosoftOfficePowerPoint做出来的东西叫演示文稿,其格式后缀名为:ppt、pptx;或者也可以保存为:pdf、图片格式等第十二页第十三页,共35页。
应用数学归纳法证明整除性问题时,关键是“凑项”,采用增项、减项、拆项和因式分解等方法,也可以说将式子“硬提公因式”,即将n=k时的项从n=k+1时的项中“硬提出来”,构成n=k的项,后面的式子相对变形,使之与n=k+1时的项相同,从而达到利用假设的目的.第十三页第十四页,共35页。【变式2】
用数学归纳法证明62n-1+1(n∈N*)能被7整除. 证明
(1)当n=1时,62-1+1=7能被7整除.
(2)假设当n=k(k∈N*,且k≥1)时,62k-1+1能被7整除. 那么当n=k+1时,62(k+1)-1+1=62k-1+2+1
=36(62k-1+1)-35. ∵62k-1+1能被7整除,35也能被7整除,
∴当n=k+1时,62(k+1)-1+1能被7整除. 由(1),(2)知命题成立.第十四页第十五页,共35页。第十五页第十六页,共35页。第十六页第十七页,共35页。第十七页第十八页,共35页。
用数学归纳法证明几何问题,关键在于分析由n=k到n=k+1的变化情况,即分点(或顶点)增加了多少,直线的条数(或划分区域)增加了几部分等,或先用f(k+1)-f(k)得出结果,再结合图形给予严谨的说明,几何问题的证明:一要注意数形结合;二要注意要有必要的文字说明.第十八页第十九页,共35页。第十九页第二十页,共35页。第二十页第二十一页,共35页。第二十一页第二十二页,共35页。第二十二页第二十三页,共35页。第二十三页第二十四页,共35页。第二十四页第二十五页,共35页。第二十五页第二十六页,共35页。【题后反思】探索性命题是近几年高考试题中经常出现的一种题型,此种问题未给出问题的结论,往往需要由特殊情况入手,归纳、猜想、探索出结论,然后再对探索出的结论进行证明,而证明往往用到数学归纳法.这类题型是高考的热点之一,它对培养创造性思维具有很好的训练作用.第二十六页第二十七页,共35页。第二十七页第二十八页,共35页。第二十八页第二十九页,共35页。第二十九页第三十页,共35页。第三十页第三十一页,共35页。
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024至2030年中国萝卜糕行业投资前景及策略咨询研究报告
- 2024至2030年中国自动化仪器仪表数据监测研究报告
- 2024至2030年中国男士茶行业投资前景及策略咨询研究报告
- 2024至2030年中国电动座式平衡重式叉车数据监测研究报告
- 2024至2030年中国炊事车行业投资前景及策略咨询研究报告
- 2024至2030年中国折叠式手动液压堆垛车数据监测研究报告
- 2024至2030年中国定香剂行业投资前景及策略咨询研究报告
- 2024至2030年中国双面反射铝箔节能帘膜行业投资前景及策略咨询研究报告
- 初中信息技术课件全部课件
- 2020年成都市崇州市事业单位卫生系统招聘考试《医学基础知识》真题及答案解析
- 2024年江苏省高考化学试卷(含答案解析)
- 成都银行招聘真题
- 2023年中国铁塔招聘考试真题
- 英文2024 年的全球支付 - 更简单的界面复杂的现实
- 2024-2025学年初中音乐七年级上册(2024)人教版(2024)教学设计合集
- 和平积弊分析检查报告和整改方案
- 医院对口支援实施方案
- 某某医院心血管内科重点学科建设可行性报告
- 辽宁交投物产有限责任公司招聘笔试题库2024
- 4.2.2指数函数的图像和性质教学说课课件高一上学期数学人教A版
- DB37T 5284-2024 建筑施工现场塔式起重机安装拆卸安全技术规程
评论
0/150
提交评论