第四章-二维图形的生成4课件_第1页
第四章-二维图形的生成4课件_第2页
第四章-二维图形的生成4课件_第3页
第四章-二维图形的生成4课件_第4页
第四章-二维图形的生成4课件_第5页
已阅读5页,还剩70页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

窗口视图变换

用户域和窗口区1.用户域:程序员用来定义草图的整个自然空间(WD)a

人们所要描述的图形均在用户域中定义。b

用户域是一个实数域,理论上是连续无限的。2.

窗口区:用户指定的任一区域(W)a窗口区W小于或等于用户域WDb小于用户域的窗口区W叫做用户域的子域。c窗口可以有多种类型,矩形窗口、圆形窗口、多边形窗口等等d窗口可以嵌套,即在第一层窗口中可再定义第二层窗口,在第I层窗口中可再定义第I+1层窗口等等。

4.5.1、窗口区和视图区12/6/20231西安工程大学计算机图形学1、屏幕域(DC):设备输出图形的最大区域,是有限的整数域。如图形显示器分辨率为:1024

768→DC[0..1023]

[0..767]2、视图区:任何小于或等于屏幕域的区域a、视图区用设备坐标定义在屏幕域中b、窗口区显示在视图区,需做窗口区到视图区的坐标转换。c、视图区可以有多种类型:圆形、矩形、多边形等。d、视图区也可以嵌套。

窗口视图变换

4.5.1、窗口区和视图区12/6/20232西安工程大学计算机图形学窗口视图用户坐标系设备坐标系窗口区和视图区的坐标变换视图的四条边界VXL,VXR,VYB,VYT设窗口的四条边界WXL,WXR,WYB,WYT12/6/20233西安工程大学计算机图形学窗口区和视图区的坐标变换设窗口的四条边界WXL,WXR,WYB,WYT视图的四条边界VXL,VXR,VYB,VYT则用户坐标系下的点(即窗口内的一点)(Xw,Yw)对应屏幕视图区中的点(Xv,Yv),其变换公式为4.5.1、窗口区和视图区12/6/20234西安工程大学计算机图形学简化为:1)

当a

c时,即x

方向的变化与y方向的变化不同时,视图中的图形会有伸缩变化,图形变形。2)

当a=c=1,b=d=0则Xv=Xw,Yv=Yw,图形完全相同。思考:前面讲的窗口→视图变换时,假设窗口的边和坐标轴平行,如果窗口的边不和坐标轴平行呢?

窗口区和视图区的坐标变换4.5.1、窗口区和视图区12/6/20235西安工程大学计算机图形学A.

先让窗口FGHI转-α角,使它和FG'H'I'重合。B.用(1)式进行计算。

窗口区和视图区的坐标变换4.5.1、窗口区和视图区12/6/20236西安工程大学计算机图形学二维图形的显示流程图4.5.1、窗口区和视图区12/6/20237西安工程大学计算机图形学直线段裁剪直接求交算法Cohen-Sutherland算法中点分割算法参数化裁剪算法Liang-Barskey算法4.5.2、直线段裁剪12/6/20238西安工程大学计算机图形学裁剪:确定图形中哪些部分落在显示区之内,哪些落在显示区之外,以便只显示落在显示区内的那部分图形。这个选择过程称为裁剪。图形裁剪算法,直接影响图形系统的效率。直线段裁剪___裁剪4.5.2、直线段裁剪12/6/20239西安工程大学计算机图形学图形裁剪中最基本的问题。假设窗口的左下角坐标为(xL,yB),右上角坐标为(xR,yT),对于给定点P(x,y),则P点在窗口内的条件是要满足下列不等式:

xL<=x<=xRyB<=y<=yT

否则,P点就在窗口外。问题:对于任意多边形窗口,如何判别?(xL,yB)(xR,yT)直线段裁剪___点的裁剪4.5.2、直线段裁剪12/6/202310西安工程大学计算机图形学直线段裁剪算法是复杂图形裁剪的基础。复杂的曲线可以通过折线段来近似,从而裁剪问题也可以化为直线段的裁剪问题。直线段裁剪4.5.2、直线段裁剪12/6/202311西安工程大学计算机图形学直接求交算法直线与窗口边都写成参数形式,求参数值。4.5.2、直线段裁剪12/6/202312西安工程大学计算机图形学裁剪线段与窗口的关系:(1)线段完全可见;(2)显然不可见;(3)其它提高裁剪效率: 快速判断情形(1)(2), 对于情形(3),设法减 少求交次数和每次求 交时所需的计算量。直接求交算法4.5.2、直线段裁剪12/6/202313西安工程大学计算机图形学Cohen-Sutherland裁剪基本思想:对于每条线段P1P2分为三种情况处理:(1)若P1P2完全在窗口内,则显示该线段P1P2。(2)若P1P2明显在窗口外,则丢弃该线段。(3)若线段不满足(1)或(2)的条件,则在交点处把线段分为两段。其中一段完全在窗口外,可弃之。然后对另一段重复上述处理。为快速判断,采用如下编码方法:4.5.2、直线段裁剪12/6/202314西安工程大学计算机图形学实现方法:

将窗口边线两边沿长,得到九个区域,每一个区域都用一个四位二进制数标识,直线的端点都按其所处区域赋予相应的区域码,用来标识出端点相对于裁剪矩形边界的位置。100100010101100000000100101000100110Cohen-Sutherland裁剪ABCD4.5.2、直线段裁剪12/6/202315西安工程大学计算机图形学将区域码的各位从右到左编号,则坐标区域与各位的关系为:

上下右左 XXXX Cohen-Sutherland裁剪任何位赋值为1,代表端点落在相应的位置上,否则该位为0。若端点在剪取矩形内,区域码为0000。如果端点落在矩形的左下角,则区域码为0101。4.5.2、直线段裁剪12/6/202316西安工程大学计算机图形学一旦给定所有的线段端点的区域码,就可以快速判断哪条直线完全在剪取窗口内,哪条直线完全在窗口外。所以得到一个规律:Cohen-Sutherland裁剪4.5.2、直线段裁剪12/6/202317西安工程大学计算机图形学若P1P2完全在窗口内code1=0,且code2=0,则“取”若P1P2明显在窗口外code1&code2≠0,则“弃”在交点处把线段分为两段。其中一段完全在窗口外,可弃之。然后对另一段重复上述处理。Cohen-Sutherland裁剪4.5.2、直线段裁剪12/6/202318西安工程大学计算机图形学如何判定应该与窗口的哪条边求交呢?

与编码中对应位为1的边求交。计算线段P1(x1,y1)P2(x2,y2)与窗口边界的交点 if(LEFT&code!=0) { x=XL; y=y1+(y2-y1)*(XL-x1)/(x2-x1);} elseif(RIGHT&code!=0) { x=XR; y=y1+(y2-y1)*(XR-x1)/(x2-x1);} elseif(BOTTOM&code!=0){ y=YB; x=x1+(x2-x1)*(YB-y1)/(y2-y1);}elseif(TOP&code!=0){ y=YT; x=x1+(x2-x1)*(YT-y1)/(y2-y1);}Cohen-Sutherland裁剪4.5.2、直线段裁剪12/6/202319西安工程大学计算机图形学Cohen-Sutherland直线裁剪算法小结本算法的优点在于简单,易于实现。他可以简单的描述为将直线在窗口左边的部分删去,按左,右,下,上的顺序依次进行,处理之后,剩余部分就是可见的了。在这个算法中求交点是很重要的,他决定了算法的速度。另外,本算法对于其他形状的窗口未必同样有效。特点:用编码方法可快速判断线段的完全可见和显然不可见。4.5.2、直线段裁剪12/6/202320西安工程大学计算机图形学中点分割裁剪算法基本思想:从P0点出发找出离P0最近的可见点,和从P1点出发找出离P1最近的可见点。这两个可见点的连线就是原线段的可见部分。与Cohen-Sutherland算法一样首先对线段端点进行编码,并把线段与窗口的关系分为三种情况,对前两种情况,进行一样的处理;对于第三种情况,用中点分割的方法求出线段与窗口的交点。A、B分别为距P0、P1最近的可见点,Pm为P0P1中点。4.5.2、直线段裁剪12/6/202321西安工程大学计算机图形学中点分割算法-求线段与窗口的交点★从P1出发找距离P1最近可见点采用上面类似方法。从P0出发找距离P0最近可见点采用中点分割方法

先求出P0P1的中点Pm.

若P0Pm不是显然不可见的,并且P0P1在窗口中有可见部分,则距P0最近的可见点一定落在P0Pm上,所以用P0Pm代替P0P1

否则用PmP1代替P0P1.

再对新的P0P1求中点Pm。重复上述过程,直到PmP1长度小于给定的控制常数为止,此时Pm收敛于交点。4.5.2、直线段裁剪12/6/202322西安工程大学计算机图形学中点分割裁剪算法4.5.2、直线段裁剪12/6/202323西安工程大学计算机图形学对分辩率为2N*2N的显示器,上述二分过程至多进行N次。主要过程只用到加法和除法运算,适合硬件实现,它可以用左右移位来代替乘除法,这样就大大加快了速度。中点分割裁剪算法4.5.2、直线段裁剪12/6/202324西安工程大学计算机图形学梁友栋-Barsky算法

设要裁剪的线段是P0P1。P0P1和窗口边界交于A,B,C,D四点,见图。算法的基本思想是从A,B和P0三点中找出最靠近P1的可见点,图中要找的点是P0。从C,D和P1中找出最靠近P0的可见点。图中要找的点是C点。那么P0C就是P0P1线段上的可见部分。4.5.2、直线段裁剪12/6/202325西安工程大学计算机图形学梁友栋-Barsky算法线段的端点为(x0,y0),(x1,y1),参数表示式为:x=x0+t(x1-x0)=x0+t∆xy=y0+t(y1-y0)=y0+t∆y0=<t<=1如果直线在窗口内,则有:XL<=x0+t∆x<=XrYb<=y0+t∆y<=Yt

求解以上的四个不等式得:Pk*t<=Qkk=1,2,3,4P1=-∆xQ1=x0-XLP2=∆x

Q2=Xr-x0P3=-∆yQ3=y0-YbP4=∆y

Q4=Yt-y04.5.2、直线段裁剪12/6/202326西安工程大学计算机图形学计算交点B对应的参数值:XL=x0+t∆x得:同样的方法可得交点ACD对应的参数值:P0对应的参数值为0,P1对应的参数值为1.所以,距离P1最近的可见点的参数值为t1=max{tAtB0}距离P0最近的可见点的参数值为t2=

min{tCtD1}若t1<t2则可见线段区间为:[t1t2]4.5.2、直线段裁剪12/6/202327西安工程大学计算机图形学一般我们利用PiQi求出了参数ti,怎么确定那些取ti最大,那些ti取最小。由上面的解答看规律:Pi<0所求参数ti应取maxPi>0所求参数ti应取minPi=0

Qi<0时,线段不可见

Qi>0时,分析另一Q,4.5.2、直线段裁剪例如:P1=0即∆x=0,说明为垂直线若Q1<0,在窗口外,如AB,若Q1>0,而Q2<0,也在窗口外,如CD12/6/202328西安工程大学计算机图形学L-B裁剪算法描述1、计算PkQk

k=1、2、3、42、判断是否有Pk=0,若有判断对应的

Qk。3、对Pk≠0的情况,用Qk/Pk计算交点对应的t值。4、对每条线计算的参数t值。

t1=max{Qk/Pk&&Pk<0,0}

t2=min{Qk/Pk&&Pk>0,1}

5、如果t1>t2,则直线在窗口外,否则计算交点坐标。4.5.2、直线段裁剪梁友栋-Barsky算法12/6/202329西安工程大学计算机图形学参数化算法(Cyrus-Beck)考虑凸多边形区域G和直线段P1P2

P(t)=(P2-P1)*t+P1

设A是区域G的边界上一点,N是区域边界在A点的内法线向量4.5.2、直线段裁剪12/6/202330西安工程大学计算机图形学参数化算法(Cyrus-Beck)对于线段P1P2上任一点P(t)与边有如下关系若N∙(P(t)−A)<0,则P(t)点在直线外侧若N∙(P(t)−A)>0,则P(t)点在直线内侧若N∙(P(t)−A)=0,则P(t)点在边界或边界的延长线上凸多边形的性质:点P(t)在凸多边形内的充要条件是,对于凸多边形边界上任意一点A和该点处内法向N,都有

N·(P(t)-A)>04.5.2、直线段裁剪12/6/202331西安工程大学计算机图形学参数化算法(Cyrus-Beck)对于有m条边的多边形,由上述方法可得可见线段参数区间的解:

Ni·(P(t)-Ai)>=0i=1,2,……m0=<t<=1又P(t)=(P2-P1)*t+P1,代入上式中得到

Ni·(P1-Ai)+Ni·(P2-P1)t>=0解上面不等式得到:当Ni·(P2-P1)>0时,解得:当Ni·(P2-P1)<0时,解得:4.5.2、直线段裁剪12/6/202332西安工程大学计算机图形学当Ni·(P2-P1)=0时,得:即线段平行于Ni所对应的边。此时再判断Ni·(P1-Ai)符号若Ni·(P1-Ai)<0,则P1P2在多边形外部,不可见若Ni·(P1-Ai)>0,则P1P2在多边形内部,继续其它边的判断4.5.2、直线段裁剪12/6/202333西安工程大学计算机图形学令:当Ni·(P2-P1)>0时,t≥ti当Ni·(P2-P1)>0时,t≤ti故对t的下限组的ti要找出其最大值tl,对t的上限组ti要找出最小值tr。即tl=max{0,max{ti;Ni·(P2-P1)>0}}tr=min{1,min{ti;Ni·(P2-P1)<0}}若tl≤tr

,则tltr即为可见线段的端点参数,否则,tl≥tr则整条线段不可见。4.5.2、直线段裁剪12/6/202334西安工程大学计算机图形学下限上限P1P2参数化算法的几何意义下限组以Ni·(P2-P1)>0为特征,表示在该处沿P1P2方向前进将接近或进入多边形内侧。上限组以Ni·(P2-P1)<0为特征,表示在该处沿P1P2方向前进将越来越远地离开多边形区域。4.5.2、直线段裁剪12/6/202335西安工程大学计算机图形学参数化算法当凸多边形是矩形窗口且矩形的边与坐标轴平行时,该算法退化为Liang-Barsky算法。4.5.2、直线段裁剪12/6/202336西安工程大学计算机图形学多边形裁剪Sutlerland_Hodgman算法Weiler-Athenton算法4.5.3、多边形裁剪12/6/202337西安工程大学计算机图形学错觉:直线段裁剪的组合?新的问题:1)边界不再封闭,需要用窗口边界的恰当部分来封闭它,如何确定其边界?4.5.3、多边形裁剪4.5.3、多边形裁剪12/6/202338西安工程大学计算机图形学2)一个凹多边形可能被裁剪成几个小的多边形,如何确定这些小多边形的边界?4.5.3、多边形裁剪4.5.3、多边形裁剪12/6/202339西安工程大学计算机图形学Sutherland-Hodgman算法分割处理策略:将多边形关于矩形窗口的裁剪分解为多边形关于窗口四边所在直线的裁剪。流水线过程(左上右下):前边的结果是后边的输入。亦称逐边裁剪算法4.5.3、多边形裁剪12/6/202340西安工程大学计算机图形学Sutherland-Hodgman算法基本思想是一次用窗口的一条边裁剪多边形。考虑窗口的一条边以及延长线构成的裁剪线该线把平面分成两个部分:可见一侧;不可见一侧多边形的各条边的两端点S、P。它们与裁剪线的位置关系只有四种可见侧可见侧可见侧可见侧4.5.3、多边形裁剪12/6/202341西安工程大学计算机图形学情况(1)仅输出顶点P;情况(2)输出0个顶点;情况(3)输出线段SP与裁剪线的交点I;情况(4)输出线段SP与裁剪线的交点I和终点P可见侧可见侧可见侧可见侧Sutherland-Hodgman算法4.5.3、多边形裁剪①④②③12/6/202342西安工程大学计算机图形学Sutherland-Hodgman算法4.5.3、多边形裁剪处理线段SP过程子框图12/6/202343西安工程大学计算机图形学上述算法仅用一条裁剪边对多边形进行裁剪,得到一个顶点序列,作为下一条裁剪边处理过程的输入。对于每一条裁剪边,算法框图同上,只是判断点在窗口哪一侧以及求线段SP与裁剪边的交点算法应随之改变。Sutherland-Hodgman算法4.5.3、多边形裁剪12/6/202344西安工程大学计算机图形学对凸多边形应用本算法可以得到正确的结果,但是对凹多边形的裁剪将如图所示显示出一条多余的直线。这种情况在裁剪后的多边形有两个或者多个分离部分的时候出现。因为只有一个输出顶点表,所以表中最后一个顶点总是连着第一个顶点。解决这个问题有多种方法,一是把凹多边形分割成若干个凸多边形,然后分别处理各个凸多边形。二是修改本算法,沿着任何一个裁剪窗口边检查顶点表,正确的连接顶点对。再有就是Weiler-Atherton算法。Sutherland-Hodgman算法4.5.3、多边形裁剪12/6/202345西安工程大学计算机图形学思考:如何推广到任意凸多边形裁剪窗口?Sutherland-Hodgman算法4.5.3、多边形裁剪12/6/202346西安工程大学计算机图形学Weiler-Athenton算法裁剪窗口为任意多边形(凸、凹、带内环)的情况:主多边形:被裁剪多边形,记为A裁剪多边形:裁剪窗口,记为B4.5.3、多边形裁剪12/6/202347西安工程大学计算机图形学Weiler-Athenton算法多边形顶点的排列顺序(使多边形区域位于有向边的左侧)外环:逆时针;内环:顺时针主多边形和裁剪多边形把二维平面分成两部分。内裁剪:A∩B外裁剪:A-B裁剪结果区域的边界由A的部分边界和B的部分边界两部分构成,并且在交点处边界发生交替,即由A的边界转至B的边界,或由B的边界转至A的边界4.5.3、多边形裁剪12/6/202348西安工程大学计算机图形学Weiler-Athenton算法如果主多边形与裁剪多边形有交点,则交点成对出现,它们被分为如下两类:进点:主多边形边界由此进入裁剪多边形内如,I1,I3,I5,I7,I9,I11出点:主多边形边界由此离开裁剪多边形区域.

如,I0,I2,I4,I6,I8,I10

4.5.3、多边形裁剪12/6/202349西安工程大学计算机图形学Weiler-Athenton算法1)建顶点表;2)求交点;3)裁剪……1、建立主多边形和裁剪多边的顶点表.2、求主多边形和裁剪多边形的交点,并将这些交点按顺序插入两多边形的顶点表中。在两多边形顶点表中的相同交点间建立双向指针。3、裁剪:如果存在没有被跟踪过的交点,执行以下步骤:

4.5.3、多边形裁剪12/6/202350西安工程大学计算机图形学Weiler-Athenton算法4.5.3、多边形裁剪12/6/202351西安工程大学计算机图形学Weiler-Athenton算法

(1)建立空的裁剪结果多边形的顶点表.

(2)选取任一没有被跟踪过的交点为始点,将其输出到结果多边形顶点表中.

(3)如果该交点为进点,跟踪主多边形边边界;否则跟踪裁剪多边形边界.

(4)跟踪多边形边界,每遇到多边形顶点,将其输出到结果多边形顶点表中,直至遇到新的交点.

(5)将该交点输出到结果多边形顶点表中,并通过连接该交点的双向指针改变跟踪方向(如果上一步跟踪的是主多边形边界,现在改为跟踪裁剪多边形边界;如果上一步跟踪裁剪多边形边界,现在改为跟踪主多边形边界).

(6)重复(4)、(5)直至回到起点取I7为起点,所得裁剪结果多边形I7I0q0I3I4I5I6I7。取I8为起点,所得裁剪结果多边形为I8I9I10I11I2q2I1I8。12/6/202352西安工程大学计算机图形学Weiler-Athenton算法交点的奇异情况处理1、与裁剪多边形的边重合的主多边形的边不参与求交点;2、对于顶点落在裁剪多边形的边上的主多边形的边,如果落在该裁剪边的内侧,将该顶点算作交点;而如果这条边落在该裁剪边的外侧,将该顶点不看作交点

4.5.3、多边形裁剪12/6/202353西安工程大学计算机图形学反走样用离散量表示连续量引起的失真现象称之为走样(aliasing)。光栅图形的走样现象阶梯状边界;图形细节失真;狭小图形遗失:动画序列中时隐时现,产生闪烁。12/6/202354西安工程大学计算机图形学走样现象举例不光滑(阶梯状)的图形边界例子:PaintBrush反走样12/6/202355西安工程大学计算机图形学图形细节失真走样现象举例12/6/202356西安工程大学计算机图形学狭小图形的遗失与动态图形的闪烁走样现象举例12/6/202357西安工程大学计算机图形学反走样概念及方法用于减少或消除走样现象的技术称为反走样(antialiasing)提高分辨率简单区域取样加权区域取样12/6/202358西安工程大学计算机图形学提高分辨率把显示器分辨率提高一倍,直线经过两倍的象素,锯齿也增加一倍,但同时每个阶梯的宽度也减小了一倍,所以显示出的直线段看起来就平直光滑了一些。12/6/202359西安工程大学计算机图形学方法简单,但代价非常大。显示器的水平、竖直分辩率各提高一倍,则显示器的点距减少一倍,帧缓存容量则增加到原来的4倍,而扫描转换同样大小的图元却要花4倍时间。而且它也只能减轻而不能消除锯齿问题另一种方法(软件方法):用较高的分辨率的显示模式下计算,(对各自像属下计算,再求(非)加权平均的颜色值),在较低的分辨率模式下显示。只能减轻而不能消除锯齿问题。提高分辨率12/6/202360西安工程大学计算机图形学软件方法1把每个像素分为四个子像素,扫描转换算法求得各子像素的灰度值,然后对四像素的灰度值简单平均,作为该像素的灰度值。12/6/202361西安工程大学计算机图形学软件方法2设分辨率为m

n,把显示窗口分为(2m+1)

(2n+1)个子像素,对每个子像素进行灰度值计算,然后根据权值表所规定的权值,对位于像素中心及四周的九个子像素加权平均,作为显示像素的颜色。设m=3,n=412/6/202362西安工程大学计算机图形学简单区域取样方法由来两点假设1、象素是数学上抽象的点,它的面积为0,它的亮度由覆盖该点的图形的亮度所决定;2、直线段是数学上抽象直线段,它的宽度为0。现实像素的面积不为0;直线段的宽度至少为1个像素;假设与现实的矛盾是导致混淆出现的原因之一12/6/202363西安工程大学计算机图形学解决方法:改变直线段模型,由此产生算法方法步骤:1、将直线段看作具有一定宽度的狭长矩形;2、当直线段与某象素有交时,求出两者相交区域的面积;3、根据相交区域的面积,确定该象素的亮度值

简单区域取样12/6/202364西安工程大学计算机图形学基本思想:每个象素是一个具有一定面积的小区域,将直线段看作具有一定宽度的狭长矩形。当直线段与象素有交时,求出两者相交区域的面积,然后根据相交区域面积的大小确定该象素的亮度值。

有宽度的线条轮廓象素相交的五种情况及用于计算面积的量DD/mDm(1)(2)(3)(4)(5)简单区域取样12

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论