版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山东省济宁市市中区2024届十校联考最后数学试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(共10小题,每小题3分,共30分)1.下表是某校合唱团成员的年龄分布,对于不同的x,下列关于年龄的统计量不会发生改变的是()年龄/岁13141516频数515x10-xA.平均数、中位数 B.众数、方差 C.平均数、方差 D.众数、中位数2.如图,将一块含有30°角的直角三角板的两个顶点放在长方形直尺的一组对边上,如果∠1=30°,那么∠2的度数为()A.30° B.40° C.50° D.60°3.已知抛物线y=x2+(2a+1)x+a2﹣a,则抛物线的顶点不可能在()A.第一象限 B.第二象限 C.第三象限 D.第四象限4.如图,在平面直角坐标系xOy中,点A(1,0),B(2,0),正六边形ABCDEF沿x轴正方向无滑动滚动,每旋转60°为滚动1次,那么当正六边形ABCDEF滚动2017次时,点F的坐标是()A.(2017,0) B.(2017,)C.(2018,) D.(2018,0)5.一次函数与二次函数在同一平面直角坐标系中的图像可能是()A. B. C. D.6.已知关于x的不等式组﹣1<2x+b<1的解满足0<x<2,则b满足的条件是()A.0<b<2 B.﹣3<b<﹣1 C.﹣3≤b≤﹣1 D.b=﹣1或﹣37.某工厂现在平均每天比原计划多生产50台机器,现在生产600台所需时间与原计划生产450台机器所需时间相同.设原计划平均每天生产x台机器,根据题意,下面所列方程正确的是()A.= B.=C.= D.=8.下列计算正确的是(
).A.(x+y)2=x2+y2 B.(-xy2)3=-x3y6C.x6÷x3=x2 D.=29.这个数是()A.整数 B.分数 C.有理数 D.无理数10.如图,在中,点D为AC边上一点,则CD的长为()A.1 B. C.2 D.二、填空题(本大题共6个小题,每小题3分,共18分)11.如果,那么的结果是______.12.分解因:=______________________.13.__.14.用配方法解方程3x2﹣6x+1=0,则方程可变形为(x﹣__)2=__.15.已知关于x的方程x2+mx+4=0有两个相等的实数根,则实数m的值是______.16.如图,∠1,∠2是四边形ABCD的两个外角,且∠1+∠2=210°,则∠A+∠D=____度.三、解答题(共8题,共72分)17.(8分)如图,在平行四边形ABCD中,E、F分别在AD、BC边上,且AE=CF.求证:(1)△ABE≌△CDF;四边形BFDE是平行四边形.18.(8分)一个不透明的袋子中装有红、白两种颜色的小球,这些球除颜色外都相同,其中红球有1个,若从中随机摸出一个球,这个球是白球的概率为.求袋子中白球的个数;(请通过列式或列方程解答)随机摸出一个球后,放回并搅匀,再随机摸出一个球,求两次都摸到相同颜色的小球的概率.(请结合树状图或列表解答)19.(8分)解不等式组,并将解集在数轴上表示出来.20.(8分)如图,在规格为8×8的边长为1个单位的正方形网格中(每个小正方形的边长为1),△ABC的三个顶点都在格点上,且直线m、n互相垂直.(1)画出△ABC关于直线n的对称图形△A′B′C′;(2)直线m上存在一点P,使△APB的周长最小;①在直线m上作出该点P;(保留画图痕迹)②△APB的周长的最小值为.(直接写出结果)21.(8分)如图,矩形ABCD中,AB=4,AD=5,E为BC上一点,BE∶CE=3∶2,连接AE,点P从点A出发,沿射线AB的方向以每秒1个单位长度的速度匀速运动,过点P作PF∥BC交直线AE于点F.(1)线段AE=______;(2)设点P的运动时间为t(s),EF的长度为y,求y关于t的函数关系式,并写出t的取值范围;(3)当t为何值时,以F为圆心的⊙F恰好与直线AB、BC都相切?并求此时⊙F的半径.22.(10分)如图,在Rt△ABC中,∠C=90°,以BC为直径的⊙O交AB于点D,DE交AC于点E,且∠A=∠ADE.(1)求证:DE是⊙O的切线;(2)若AD=16,DE=10,求BC的长.23.(12分)在矩形纸片ABCD中,AB=6,BC=8,现将纸片折叠,使点D与点B重合,折痕为EF,连接DF.(1)说明△BEF是等腰三角形;(2)求折痕EF的长.24.已知:如图,在正方形ABCD中,点E、F分别是AB、BC边的中点,AF与CE交点G,求证:AG=CG.
参考答案一、选择题(共10小题,每小题3分,共30分)1、D【解题分析】
由表易得x+(10-x)=10,所以总人数不变,14岁的人最多,众数不变,中位数也可以确定.【题目详解】∵年龄为15岁和16岁的同学人数之和为:x+(10-x)=10,∴由表中数据可知人数最多的是年龄为14岁的,共有15人,合唱团总人数为30人,∴合唱团成员的年龄的中位数是14,众数也是14,这两个统计量不会随着x的变化而变化.故选D.2、D【解题分析】如图,因为,∠1=30°,∠1+∠3=60°,所以∠3=30°,因为AD∥BC,所以∠3=∠4,所以∠4=30°,所以∠2=180°-90°-30°=60°,故选D.3、D【解题分析】
求得顶点坐标,得出顶点的横坐标和纵坐标的关系式,即可求得.【题目详解】抛物线y=x2+(2a+1)x+a2﹣a的顶点的横坐标为:x=﹣=﹣a﹣,纵坐标为:y==﹣2a﹣,∴抛物线的顶点横坐标和纵坐标的关系式为:y=2x+,∴抛物线的顶点经过一二三象限,不经过第四象限,故选:D.【题目点拨】本题考查了二次函数的性质,得到顶点的横纵坐标的关系式是解题的关键.4、C【解题分析】
本题是规律型:点的坐标;坐标与图形变化-旋转,正六边形ABCDEF一共有6条边,即6次一循环;因为2017÷6=336余1,点F滚动1次时的横坐标为2,纵坐标为,点F滚动7次时的横坐标为8,纵坐标为,所以点F滚动2107次时的纵坐标与相同,横坐标的次数加1,由此即可解决问题.【题目详解】.解:∵正六边形ABCDEF一共有6条边,即6次一循环;∴2017÷6=336余1,∴点F滚动1次时的横坐标为2,纵坐标为,点F滚动7次时的横坐标为8,纵坐标为,∴点F滚动2107次时的纵坐标与相同,横坐标的次数加1,∴点F滚动2107次时的横坐标为2017+1=2018,纵坐标为,∴点F滚动2107次时的坐标为(2018,),故选C.【题目点拨】本题考查坐标与图形的变化,规律型:点的坐标,解题关键是学会从特殊到一般的探究方法,是中考常考题型.5、D【解题分析】
本题可先由一次函数y=ax+c图象得到字母系数的正负,再与二次函数y=ax2+bx+c的图象相比较看是否一致.【题目详解】A、一次函数y=ax+c与y轴交点应为(0,c),二次函数y=ax2+bx+c与y轴交点也应为(0,c),图象不符合,故本选项错误;B、由抛物线可知,a>0,由直线可知,a<0,a的取值矛盾,故本选项错误;C、由抛物线可知,a<0,由直线可知,a>0,a的取值矛盾,故本选项错误;D、由抛物线可知,a<0,由直线可知,a<0,且抛物线与直线与y轴的交点相同,故本选项正确.故选D.【题目点拨】本题考查抛物线和直线的性质,用假设法来搞定这种数形结合题是一种很好的方法.6、C【解题分析】
根据不等式的性质得出x的解集,进而解答即可.【题目详解】∵-1<2x+b<1∴,∵关于x的不等式组-1<2x+b<1的解满足0<x<2,∴,解得:-3≤b≤-1,故选C.【题目点拨】此题考查解一元一次不等式组,关键是根据不等式的性质得出x的解集.7、B【解题分析】
设原计划平均每天生产x台机器,则实际平均每天生产(x+50)台机器,根据题意可得:现在生产600台所需时间与原计划生产450台机器所需时间相同,据此列方程即可.【题目详解】设原计划平均每天生产x台机器,则实际平均每天生产(x+50)台机器,由题意得:.故选B.【题目点拨】本题考查了由实际问题抽象出分式方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程.8、D【解题分析】分析:根据完全平方公式、积的乘方法则、同底数幂的除法法则和算术平方根的定义计算,判断即可.详解:(x+y)2=x2+2xy+y2,A错误;(-xy2)3=-x3y6,B错误;x6÷x3=x3,C错误;==2,D正确;故选D.点睛:本题考查的是完全平方公式、积的乘方、同底数幂的除法以及算术平方根的计算,掌握完全平方公式、积的乘方法则、同底数幂的除法法则和算术平方根的定义是解题的关键.9、D【解题分析】
由于圆周率π是一个无限不循环的小数,由此即可求解.【题目详解】解:实数π是一个无限不循环的小数.所以是无理数.
故选D.【题目点拨】本题主要考查无理数的概念,π是常见的一种无理数的形式,比较简单.10、C【解题分析】
根据∠DBC=∠A,∠C=∠C,判定△BCD∽△ACB,根据相似三角形对应边的比相等得到代入求值即可.【题目详解】∵∠DBC=∠A,∠C=∠C,∴△BCD∽△ACB,∴∴∴CD=2.故选:C.【题目点拨】主要考查相似三角形的判定与性质,掌握相似三角形的判定定理是解题的关键.二、填空题(本大题共6个小题,每小题3分,共18分)11、1【解题分析】
令k,则a=2k,b=3k,代入到原式化简的结果计算即可.【题目详解】令k,则a=2k,b=3k,∴原式=1.故答案为:1.【题目点拨】本题考查了约分,解题的关键是掌握约分的定义:约去分式的分子与分母的公因式,不改变分式的值,这样的分式变形叫做分式的约分.12、(x-2y)(x-2y+1)【解题分析】
根据所给代数式第一、二、五项一组,第三、四项一组,分组分解后再提公因式即可分解.【题目详解】=x2-4xy+4y2-2y+x=(x-2y)2+x-2y=(x-2y)(x-2y+1)13、.【解题分析】
根据去括号法则和合并同类二次根式法则计算即可.【题目详解】解:原式故答案为:【题目点拨】此题考查的是二次根式的加减运算,掌握去括号法则和合并同类二次根式法则是解决此题的关键.14、1【解题分析】原方程为3x2−6x+1=0,二次项系数化为1,得x2−2x=−,即x2−2x+1=−+1,所以(x−1)2=.故答案为:1,.15、±4【解题分析】分析:由方程有两个相等的实数根,得到根的判别式等于0,列出关于m的方程,求出方程的解即可得到m的值.详解:∵方程有两个相等的实数根,∴解得:故答案为点睛:考查一元二次方程根的判别式,当时,方程有两个不相等的实数根.当时,方程有两个相等的实数根.当时,方程没有实数根.16、210.【解题分析】
利用邻补角的定义求出∠ABC+∠BCD,再利用四边形内角和定理求得∠A+∠D.【题目详解】∵∠1+∠2=210°,∴∠ABC+∠BCD=180°×2﹣210°=150°,∴∠A+∠D=360°﹣150°=210°.故答案为:210.【题目点拨】本题考查了四边形的内角和定理以及邻补角的定义,利用邻补角的定义求出∠ABC+∠BCD是关键.三、解答题(共8题,共72分)17、(1)见解析;(2)见解析;【解题分析】
(1)由四边形ABCD是平行四边形,根据平行四边形的对边相等,对角相等的性质,即可证得∠A=∠C,AB=CD,又由AE=CF,利用SAS,即可判定△ABE≌△CDF.(2)由四边形ABCD是平行四边形,根据平行四边形对边平行且相等,即可得AD∥BC,AD=BC,又由AE=CF,即可证得DE=BF.根据对边平行且相等的四边形是平行四边形,即可证得四边形BFDE是平行四边形.【题目详解】证明:(1)∵四边形ABCD是平行四边形,∴∠A=∠C,AB=CD,在△ABE和△CDF中,∵AB=CD,∠A=∠C,AE=CF,∴△ABE≌△CDF(SAS).(2)∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC.∵AE=CF,∴AD﹣AE=BC﹣CF,即DE=BF.∴四边形BFDE是平行四边形.18、(1)袋子中白球有2个;(2)见解析,.【解题分析】
(1)首先设袋子中白球有x个,利用概率公式求即可得方程:,解此方程即可求得答案;
(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次都摸到相同颜色的小球的情况,再利用概率公式即可求得答案.【题目详解】解:(1)设袋子中白球有x个,根据题意得:,解得:x=2,经检验,x=2是原分式方程的解,∴袋子中白球有2个;(2)画树状图得:∵共有9种等可能的结果,两次都摸到相同颜色的小球的有5种情况,∴两次都摸到相同颜色的小球的概率为:.【题目点拨】此题考查了列表法或树状图法求概率.注意掌握方程思想的应用.注意概率=所求情况数与总情况数之比.19、原不等式组的解集为﹣4<x≤1,在数轴上表示见解析.【解题分析】分析:根据解一元一次不等式组的步骤,大小小大中间找,可得答案详解:解不等式①,得x>﹣4,解不等式②,得x≤1,把不等式①②的解集在数轴上表示如图,原不等式组的解集为﹣4<x≤1.点睛:本题考查了解一元一次不等式组,利用不等式组的解集的表示方法是解题关键.20、(1)详见解析;(2)①详见解析;②.【解题分析】
(1)根据轴对称的性质,可作出△ABC关于直线n的对称图形△A′B′C′;
(2)①作点B关于直线m的对称点B'',连接B''A与x轴的交点为点P;
②由△ABP的周长=AB+AP+BP=AB+AP+B''P,则当AP与PB''共线时,△APB的周长有最小值.【题目详解】解:(1)如图△A′B′C′为所求图形.(2)①如图:点P为所求点.②∵△ABP的周长=AB+AP+BP=AB+AP+B''P∴当AP与PB''共线时,△APB的周长有最小值.∴△APB的周长的最小值AB+AB''=+3故答案为+3【题目点拨】本题考查轴对称变换,勾股定理,最短路径问题,解题关键是熟练掌握轴对称的性质.21、(1)5;(2);(3)时,半径PF=;t=16,半径PF=12.【解题分析】
(1)由矩形性质知BC=AD=5,根据BE:CE=3:2知BE=3,利用勾股定理可得AE=5;(2)由PF∥BE知,据此求得AF=t,再分0≤t≤4和t>4两种情况分别求出EF即可得;(3)由以点F为圆心的⊙F恰好与直线AB、BC相切时PF=PG,再分t=0或t=4、0<t<4、t>4这三种情况分别求解可得【题目详解】(1)∵四边形ABCD为矩形,∴BC=AD=5,∵BE∶CE=3∶2,则BE=3,CE=2,∴AE===5.(2)如图1,当点P在线段AB上运动时,即0≤t≤4,∵PF∥BE,∴=,即=,∴AF=t,则EF=AE-AF=5-t,即y=5-t(0≤t≤4);如图2,当点P在射线AB上运动时,即t>4,此时,EF=AF-AE=t-5,即y=t-5(t>4);综上,;(3)以点F为圆心的⊙F恰好与直线AB、BC相切时,PF=FG,分以下三种情况:①当t=0或t=4时,显然符合条件的⊙F不存在;②当0<t<4时,如解图1,作FG⊥BC于点G,则FG=BP=4-t,∵PF∥BC,∴△APF∽△ABE,∴=,即=,∴PF=t,由4-t=t可得t=,则此时⊙F的半径PF=;③当t>4时,如解图2,同理可得FG=t-4,PF=t,由t-4=t可得t=16,则此时⊙F的半径PF=12.【题目点拨】本题主要考查了矩形的性质,勾股定理,动点的函数为题,切线的性质,相似三角形的判定与性质及分类讨论的数学思想.解题的关键是熟练掌握切线的性质、矩形的性质及相似三角形的判定与性质.22、(1)证明见解析;(2)15.【解题分析】
(1)先连接OD,根据圆周角定理求出∠ADB=90°,根据直角三角形斜边上中线性质求出DE=BE,推出∠EDB=∠EBD,∠ODB=∠OBD,即可求出∠ODE=90°,根据切线的判定推出即可.
(2)首先证明AC=2DE=20,在Rt△ADC中,DC=12,设BD=x,在Rt△BDC中,BC2=x2+122,在Rt△ABC中,BC2=(x+16)2-202,可得x2+122=(x+16)2-202,解方程即可解决问题.【题目详解】(1)证明:连结OD,∵∠ACB=90°,∴∠A+∠B=90°,又∵OD=OB,∴∠B=∠BDO,∵∠ADE=∠A,∴∠ADE+∠BDO=90°,∴∠ODE=90°.∴DE是⊙O的切线;(2)连结CD,∵∠ADE=∠A,∴AE=DE.∵BC是⊙O的直径,∠ACB=90°.∴EC是⊙O的切线.∴DE=EC.∴AE=EC,又∵DE=10,∴AC=2DE=20,在Rt△ADC中,DC=设BD=x,在Rt△BDC中,BC2=x2+122,在Rt△ABC中,BC2=(x+16)2﹣202,∴x2+122=(x+16)2﹣202,解得x=9,∴BC=.【题目点拨】考查切线的性质、勾股定理、等腰三角形的判定和性质等知识,解题的关键是灵活综合运用所学知识解决问题.23、(1)见解析;(2).【解题分析】
(1)根据折叠得出∠D
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年水泥买卖合同(含合同变更和补充条款)
- 2024年度绿色建筑设计与施工合作协议书3篇
- 学困生转化工作计划
- 小学校本教研活动计划
- 电话销售业务员工作计划
- 劳动合同样板
- 公司员工自我鉴定
- 制定护士的年度工作计划
- 政府公共关系(第二版)课件 第6章 政府的公众对象与舆论环境
- 经典国学教学计划
- 2024-2030年中国硅肥行业规模分析及投资前景研究报告
- 电网行业工作汇报模板22
- 2024年度跨境电商平台承包经营合同3篇
- 2025年上半年人民日报社招聘应届高校毕业生85人笔试重点基础提升(共500题)附带答案详解
- 山东省临沂市2023-2024学年高二上学期期末考试生物试题 含答案
- 2024-2025学年一年级数学上册期末乐考非纸笔测试题(二 )(苏教版2024秋)
- 办公楼电气改造施工方案
- 浙江省衢州市2023-2024学年高一上学期期末英语试题(含答案)3
- 上学期高二期末语文试卷(含答案)
- 超龄员工用工免责协议书
- 《雁门太守行》课件
评论
0/150
提交评论