版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
河北省廊坊市永清县2024届中考押题数学预测卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.如图所示图形中,不是正方体的展开图的是()A. B.C. D.2.已知常数k<0,b>0,则函数y=kx+b,的图象大致是下图中的()A. B.C. D.3.如图,将绕直角顶点顺时针旋转,得到,连接,若,则的度数是()A. B. C. D.4.如图,△ABC纸片中,∠A=56,∠C=88°.沿过点B的直线折叠这个三角形,使点C落在AB边上的点E处,折痕为BD.则∠BDE的度数为()A.76° B.74° C.72° D.70°5.边长相等的正三角形和正六边形的面积之比为()A.1∶3 B.2∶3 C.1∶6 D.1∶6.对于实数x,我们规定[x]表示不大于x的最大整数,如[4]=4,[]=1,[﹣2.5]=﹣3.现对82进行如下操作:82[]=9[]=3[]=1,这样对82只需进行3次操作后变为1,类似地,对121只需进行多少次操作后变为1()A.1 B.2 C.3 D.47.如图,经过测量,C地在A地北偏东46°方向上,同时C地在B地北偏西63°方向上,则∠C的度数为()A.99° B.109° C.119° D.129°8.如图,EF过▱ABCD对角线的交点O,交AD于E,交BC于F,若▱ABCD的周长为18,,则四边形EFCD的周长为A.14 B.13 C.12 D.109.下列运算正确的是()A.(a2)4=a6 B.a2•a3=a6 C. D.10.如图,将四根长度相等的细木条首尾相连,用钉子钉成四边形,转动这个四边形,使它形状改变,当,时,等于()A. B. C. D.二、填空题(共7小题,每小题3分,满分21分)11.如图,每个小正方形的边长为1,A、B、C是小正方形的顶点,则∠ABC的正弦值为__.12.若有意义,则x的范围是_____.13.如图,一下水管道横截面为圆形,直径为100cm,下雨前水面宽为60cm,一场大雨过后,水面宽为80cm,则水位上升______cm.14.如图,在四边形ABCD中,AB=AD,∠BAD=∠BCD=90°,连接AC、BD,若S四边形ABCD=18,则BD的最小值为_________.15.如图是某商品的标志图案,AC与BD是⊙O的两条直径,首尾顺次连接点A、B、C、D,得到四边形ABCD,若AC=10cm,∠BAC=36°,则图中阴影部分的面积为_____.16.如图,在△ABC中,∠C=∠ABC,BE⊥AC,垂足为点E,△BDE是等边三角形,若AD=4,则线段BE的长为______.17.如图,矩形ABCD中,如果以AB为直径的⊙O沿着滚动一周,点恰好与点C重合,那么的值等于________.(结果保留两位小数)三、解答题(共7小题,满分69分)18.(10分)如图,BC是路边坡角为30°,长为10米的一道斜坡,在坡顶灯杆CD的顶端D处有一探射灯,射出的边缘光线DA和DB与水平路面AB所成的夹角∠DAN和∠DBN分别是37°和60°(图中的点A、B、C、D、M、N均在同一平面内,CM∥AN).求灯杆CD的高度;求AB的长度(结果精确到0.1米).(参考数据:=1.1.sin37°≈060,cos37°≈0.80,tan37°≈0.75)19.(5分)小明和小亮为下周日计划了三项活动,分别是看电影(记为A)、去郊游(记为B)、去图书馆(记为C).他们各自在这三项活动中任选一个,每项活动被选中的可能性相同.(1)小明选择去郊游的概率为多少;(2)请用树状图或列表法求小明和小亮的选择结果相同的概率.20.(8分)某汽车制造公司计划生产A、B两种新型汽车共40辆投放到市场销售.已知A型汽车每辆成本34万元,售价39万元;B型汽车每辆成本42万元,售价50万元.若该公司对此项计划的投资不低于1536万元,不高于1552万元.请解答下列问题:(1)该公司有哪几种生产方案?(2)该公司按照哪种方案生产汽车,才能在这批汽车全部售出后,所获利润最大,最大利润是多少?(3)在(2)的情况下,公司决定拿出利润的2.5%全部用于生产甲乙两种钢板(两种都生产),甲钢板每吨5000元,乙钢板每吨6000元,共有多少种生产方案?(直接写出答案)21.(10分)嘉淇同学利用业余时间进行射击训练,一共射击7次,经过统计,制成如图12所示的折线统计图.这组成绩的众数是;求这组成绩的方差;若嘉淇再射击一次(成绩为整数环),得到这8次射击成绩的中位数恰好就是原来7次成绩的中位数,求第8次的射击成绩的最大环数.22.(10分)先化简再求值:÷(a﹣),其中a=2cos30°+1,b=tan45°.23.(12分)某食品厂生产一种半成品食材,产量百千克与销售价格元千克满足函数关系式,从市场反馈的信息发现,该半成品食材的市场需求量百千克与销售价格元千克满足一次函数关系,如下表:销售价格元千克2410市场需求量百千克12104已知按物价部门规定销售价格x不低于2元千克且不高于10元千克求q与x的函数关系式;当产量小于或等于市场需求量时,这种半成品食材能全部售出,求此时x的取值范围;当产量大于市场需求量时,只能售出符合市场需求量的半成品食材,剩余的食材由于保质期短而只能废弃若该半成品食材的成本是2元千克.求厂家获得的利润百元与销售价格x的函数关系式;当厂家获得的利润百元随销售价格x的上涨而增加时,直接写出x的取值范围利润售价成本24.(14分)如图,在平行四边形ABCD中,E为BC边上一点,连结AE、BD且AE=AB.求证:∠ABE=∠EAD;若∠AEB=2∠ADB,求证:四边形ABCD是菱形.
参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、C【解题分析】
由平面图形的折叠及正方形的展开图结合本题选项,一一求证解题.【题目详解】解:A、B、D都是正方体的展开图,故选项错误;C、带“田”字格,由正方体的展开图的特征可知,不是正方体的展开图.故选C.【题目点拨】此题考查正方形的展开图,难度不大,但是需要空间想象力才能更好的解题2、D【解题分析】
当k<0,b>0时,直线经过一、二、四象限,双曲线在二、四象限,由此确定正确的选项.【题目详解】解:∵当k<0,b>0时,直线与y轴交于正半轴,且y随x的增大而减小,∴直线经过一、二、四象限,双曲线在二、四象限.故选D.【题目点拨】本题考查了一次函数、反比例函数的图象与性质.关键是明确系数与图象的位置的联系.3、B【解题分析】
根据旋转的性质可得AC=A′C,然后判断出△ACA′是等腰直角三角形,根据等腰直角三角形的性质可得∠CAA′=45°,再根据三角形的一个外角等于与它不相邻的两个内角的和求出∠A′B′C,最后根据旋转的性质可得∠B=∠A′B′C.【题目详解】解:∵Rt△ABC绕直角顶点C顺时针旋转90°得到△A′B′C,∴AC=A′C,∴△ACA′是等腰直角三角形,∴∠CAA′=45°,∴∠A′B′C=∠1+∠CAA′=20°+45°=65°,∴∠B=∠A′B′C=65°.故选B.【题目点拨】本题考查了旋转的性质,等腰直角三角形的判定与性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记各性质并准确识图是解题的关键.4、B【解题分析】
直接利用三角形内角和定理得出∠ABC的度数,再利用翻折变换的性质得出∠BDE的度数.【题目详解】解:∵∠A=56°,∠C=88°,
∴∠ABC=180°-56°-88°=36°,
∵沿过点B的直线折叠这个三角形,使点C落在AB边上的点E处,折痕为BD,
∴∠CBD=∠DBE=18°,∠C=∠DEB=88°,
∴∠BDE=180°-18°-88°=74°.
故选:B.【题目点拨】此题主要考查了三角形内角和定理,正确掌握三角形内角和定理是解题关键.5、C【解题分析】解:设正三角形的边长为1a,则正六边形的边长为1a.过A作AD⊥BC于D,则∠BAD=30°,AD=AB•cos30°=1a•=a,∴S△ABC=BC•AD=×1a×a=a1.连接OA、OB,过O作OD⊥AB.∵∠AOB==20°,∴∠AOD=30°,∴OD=OB•cos30°=1a•=a,∴S△ABO=BA•OD=×1a×a=a1,∴正六边形的面积为:2a1,∴边长相等的正三角形和正六边形的面积之比为:a1:2a1=1:2.故选C.点睛:本题主要考查了正三角形与正六边形的性质,根据已知利用解直角三角形知识求出正六边形面积是解题的关键.6、C【解题分析】分析:[x]表示不大于x的最大整数,依据题目中提供的操作进行计算即可.详解:121∴对121只需进行3次操作后变为1.故选C.点睛:本题是一道关于无理数的题目,需要结合定义的新运算和无理数的估算进行求解.7、B【解题分析】
方向角是从正北或正南方向到目标方向所形成的小于90°的角,根据平行线的性质求得∠ACF与∠BCF的度数,∠ACF与∠BCF的和即为∠C的度数.【题目详解】解:由题意作图如下∠DAC=46°,∠CBE=63°,由平行线的性质可得∠ACF=∠DAC=46°,∠BCF=∠CBE=63°,∴∠ACB=∠ACF+∠BCF=46°+63°=109°,故选B.【题目点拨】本题考查了方位角和平行线的性质,熟练掌握方位角的概念和平行线的性质是解题的关键.8、C【解题分析】
∵平行四边形ABCD,∴AD∥BC,AD=BC,AO=CO,∴∠EAO=∠FCO,∵在△AEO和△CFO中,,∴△AEO≌△CFO,∴AE=CF,EO=FO=1.5,∵C四边形ABCD=18,∴CD+AD=9,∴C四边形CDEF=CD+DE+EF+FC=CD+DE+EF+AE=CD+AD+EF=9+3=12.故选C.【题目点拨】本题关键在于利用三角形全等,解题关键是将四边形CDEF的周长进行转化.9、C【解题分析】
根据幂的乘方、同底数幂的乘法、二次根式的乘法、二次根式的加法计算即可.【题目详解】A、原式=a8,所以A选项错误;B、原式=a5,所以B选项错误;C、原式=,所以C选项正确;D、与不能合并,所以D选项错误.故选:C.【题目点拨】本题考查了幂的乘方、同底数幂的乘法、二次根式的乘法、二次根式的加法,熟练掌握它们的运算法则是解答本题的关键.10、B【解题分析】
首先连接AC,由将四根长度相等的细木条首尾相连,用钉子钉成四边形ABCD,AB=1,,易得△ABC是等边三角形,即可得到答案.【题目详解】连接AC,
∵将四根长度相等的细木条首尾相连,用钉子钉成四边形ABCD,
∴AB=BC,
∵,
∴△ABC是等边三角形,
∴AC=AB=1.
故选:B.【题目点拨】本题考点:菱形的性质.二、填空题(共7小题,每小题3分,满分21分)11、【解题分析】
首先利用勾股定理计算出AB2,BC2,AC2,再根据勾股定理逆定理可证明∠BCA=90°,然后得到∠ABC的度数,再利用特殊角的三角函数可得∠ABC的正弦值.【题目详解】解:连接ACAB2=32+12=10,BC2=22+12=5,AC2=22+12=5,∴AC=CB,BC2+AC2=AB2,∴∠BCA=90°,∴∠ABC=45°,∴∠ABC的正弦值为.故答案为:.【题目点拨】此题主要考查了锐角三角函数,以及勾股定理逆定理,关键是掌握特殊角的三角函数.12、x≤1.【解题分析】
根据二次根式有意义的条件、分式有意义的条件列出不等式,解不等式即可.【题目详解】依题意得:1﹣x≥0且x﹣3≠0,解得:x≤1.故答案是:x≤1.【题目点拨】本题主要考查了二次根式和分式有意义的条件,关键是掌握二次根式中的被开方数必须是非负数,分式有意义的条件是分母不等于零.13、10或1【解题分析】
分水位在圆心下以及圆心上两种情况,画出符合题意的图形进行求解即可得.【题目详解】如图,作半径于C,连接OB,由垂径定理得:=AB=×60=30cm,在中,,当水位上升到圆心以下时
水面宽80cm时,则,水面上升的高度为:;当水位上升到圆心以上时,水面上升的高度为:,综上可得,水面上升的高度为30cm或1cm,故答案为:10或1.【题目点拨】本题考查了垂径定理的应用,掌握垂径定理、灵活运用分类讨论的思想是解题的关键.14、6【解题分析】
过A作AM⊥CD于M,过A作AN⊥BC于N,先根据“AAS”证明△DAM≌△BAN,再证明四边形AMCN为正方形,可求得AC=6,从而当BD⊥AC时BD最小,且最小值为6.【题目详解】如下图,过A作AM⊥CD于M,过A作AN⊥BC于N,则∠MAN=90°,∠DAM+∠BAM=90°,∠BAM+∠BAN=90°,∴∠DAM=∠BAN.∵∠DMA=∠N=90°,AB=AD,∴△DAM≌△BAN,∴AM=AN,∴四边形AMCN为正方形,∴S四边形ABCD=S四边形AMCN=AC2,∴AC=6,∴BD⊥AC时BD最小,且最小值为6.故答案为:6.【题目点拨】本题考查了全等三角形的判定与性质,正方形的判定与性质,正确作出辅助线是解答本题的关键.15、10πcm1.【解题分析】
根据已知条件得到四边形ABCD是矩形,求得图中阴影部分的面积=S扇形AOD+S扇形BOC=1S扇形AOD,根据等腰三角形的性质得到∠BAC=∠ABO=36°,由圆周角定理得到∠AOD=71°,于是得到结论.【题目详解】解:∵AC与BD是⊙O的两条直径,∴∠ABC=∠ADC=∠DAB=∠BCD=90°,∴四边形ABCD是矩形,∴S△ABO=S△CDO=S△AOD=S△BOD,∴图中阴影部分的面积=S扇形AOD+S扇形BOC=1S扇形AOD,∵OA=OB,∴∠BAC=∠ABO=36°,∴∠AOD=71°,∴图中阴影部分的面积=1×=10π,故答案为10πcm1.点睛:本题考查了扇形的面积,矩形的判定和性质,圆周角定理的推论,三角形外角的性质,熟练掌握扇形的面积公式是解题的关键.16、1【解题分析】
本题首先由等边三角形的性质及垂直定义得到∠DBE=60°,∠BEC=90°,再根据等腰三角形的性质可以得出∠EBC=∠ABC-60°=∠C-60°,最后根据三角形内角和定理得出关系式∠C-60°+∠C=90°解出∠C,推出AD=DE,于是得到结论.【题目详解】∵△BDE是正三角形,∴∠DBE=60°;∵在△ABC中,∠C=∠ABC,BE⊥AC,∴∠C=∠ABC=∠ABE+∠EBC,则∠EBC=∠ABC-60°=∠C-60°,∠BEC=90°;∴∠EBC+∠C=90°,即∠C-60°+∠C=90°,解得∠C=75°,∴∠ABC=75°,∴∠A=30°,∵∠AED=90°-∠DEB=30°,∴∠A=∠AED,∴DE=AD=1,∴BE=DE=1,故答案为:1.【题目点拨】本题主要考查等腰三角形的性质及等边三角形的性质及垂直定义,解题的关键是根据三角形内角和定理列出符合题意的简易方程,从而求出结果.17、3.1【解题分析】分析:由题意可知:BC的长就是⊙O的周长,列式即可得出结论.详解:∵以AB为直径的⊙O沿着滚动一周,点恰好与点C重合,∴BC的长就是⊙O的周长,∴π•AB=BC,∴=π≈3.1.故答案为3.1.点睛:本题考查了圆的周长以及线段的比.解题的关键是弄懂BC的长就是⊙O的周长.三、解答题(共7小题,满分69分)18、(1)10米;(2)11.4米【解题分析】
(1)延长DC交AN于H.只要证明BC=CD即可;(2)在Rt△BCH中,求出BH、CH,在Rt△ADH中求出AH即可解决问题.【题目详解】(1)如图,延长DC交AN于H,∵∠DBH=60°,∠DHB=90°,∴∠BDH=30°,∵∠CBH=30°,∴∠CBD=∠BDC=30°,∴BC=CD=10(米);(2)在Rt△BCH中,CH=BC=5,BH=5≈8.65,∴DH=15,在Rt△ADH中,AH=≈=20,∴AB=AH﹣BH=20﹣8.65=11.4(米).【题目点拨】本题考查解直角三角形的应用﹣坡度坡角问题,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.19、(1)13;(2)1【解题分析】
(1)利用概率公式直接计算即可;(2)首先根据题意列表,然后求得所有等可能的结果与小明和小亮选择结果相同的情况,再利用概率公式即可求得答案【题目详解】(1)∵小明分别是从看电影(记为A)、去郊游(记为B)、去图书馆(记为C)的一个景点去游玩,∴小明选择去郊游的概率=;(2)列表得:ABCA(A,A)(B,A)(C,A)B(A,B)(B,B)(C,B)C(A,C)(B,C)(C,C)由列表可知两人选择的方案共有9种等可能的结果,其中选择同种方案有3种,所以小明和小亮的选择结果相同的概率==.【题目点拨】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.20、(1)共有三种方案,分别为①A型号16辆时,B型号24辆;②A型号17辆时,B型号23辆;③A型号18辆时,B型号22辆;(2)当时,万元;(3)A型号4辆,B型号8辆;A型号10辆,B型号3辆两种方案【解题分析】
(1)设A型号的轿车为x辆,可根据题意列出不等式组,根据问题的实际意义推出整数值;(2)根据“利润=售价-成本”列出一次函数的解析式解答;(3)根据(2)中方案设计计算.【题目详解】(1)设生产A型号x辆,则B型号(40-x)辆153634x+42(40-x)1552解得,x可以取值16,17,18共有三种方案,分别为A型号16辆时,B型号24辆A型号17辆时,B型号23辆A型号18辆时,B型号22辆(2)设总利润W万元则W==w随x的增大而减小当时,万元(3)A型号4辆,B型号8辆;A型号10辆,B型号3辆两种方案【题目点拨】本题主要考查了一次函数的应用,以及一元一次不等式组的应用,此题是典型的数学建模问题,要先将实际问题转化为不等式组解应用题.21、(1)10;(2);(3)9环【解题分析】
(1)根据众数的定义,一组数据中出现次数最多的数,结合统计图得到答案.(2)先求这组成绩的平均数,再求这组成绩的方差;(3)先求原来7次成绩的中位数,再求第8次的射击成绩的最大环数.【题目详解】解:(1)在这7次射击中,10环出现的次数最多,故这组成绩的众数是10;(2)嘉淇射击成绩的平均数为:,方差为:.(3)原来7次成绩为7899101010,原来7次成绩的中位数为9,当第8次射击成绩为10时,得到8次成绩的中位数为9.5,当第8次射击成绩小于10时,得到8次成绩的中位数均为9,因此第8次的射击成绩的最大环数为9环.【题目点拨】本题主要考查了折线统计图和众数、中位数、方差等知识.掌握众数、中位数、方差以及平均数的定义是解题的关键.22、;【解题分析】
先根据分式的混合运算顺序和运算法则化简原式,再由特殊锐角的三角函数值得出a和b的值,代入计算可得.【题目详解】原式=÷(﹣)===,当a=2cos30°+1=2×+1=+1,b=tan45°=1时,原式=.【题目点拨】本题主要考查分式的化简求
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年水泥买卖合同(含合同变更和补充条款)
- 2024年度绿色建筑设计与施工合作协议书3篇
- 学困生转化工作计划
- 小学校本教研活动计划
- 电话销售业务员工作计划
- 劳动合同样板
- 公司员工自我鉴定
- 制定护士的年度工作计划
- 政府公共关系(第二版)课件 第6章 政府的公众对象与舆论环境
- 经典国学教学计划
- GB/T 43575-2023区块链和分布式记账技术系统测试规范
- 小儿肺炎的病例讨论
- 校园教职工思想动态和现实表现动态评估
- 《气体灭火系统》课件
- 黑龙江省鸡西市2023-2024学年八年级上学期第二次质量监测道德与法治试题
- 2022年高考天津语文高考试题及答案
- 2022-2023学年下学期人教版八年级英语Unit8 现在完成时导学案(word版)
- JCT908-2013 人造石的标准
- 礼品申请领用表
- 开工报告、暂停令格式
- 无人机与人工智能结合的应用
评论
0/150
提交评论