版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第2讲平面直角坐标系运用掌握求平面直角坐标系中多边形的面积方法;掌握平面直角坐标系中规律运用;知识点1:平面直角坐标系内的面积计算1.补全法:构造矩形,算出矩形的面积,减去相应的三角形的面积即可.2.切割法:将图形切割成易算面积的若干部分,分别计算、再相加。知识点2:平面直角坐标系中规律题探究方法1.探索循环节;2.探索循环规律;3.多方向规律题需要分类讨论;注意:注意起点位置!!【题型一:平面直角坐标系内的面积计算】【典例1】(2022秋•广陵区校级期末)如图所示,在平面直角坐标系中,已知A(0,1)、B(2,0)、C(4,3).(1)在平面直角坐标系中画出△ABC,则△ABC的面积是;(2)若点D与点C关于y轴对称,则点D的坐标为;(3)已知P为x轴上一点,若△ABP的面积为1,求点P的坐标.【变式21】(2022秋•亭湖区期末)在平面直角坐标系xOy中,△ABC的位置如图所示.(1)分别写出以下顶点的坐标:A(,);B(,).(2)顶点C关于y轴对称的点C′的坐标(,).(3)顶点B关于直线x=﹣1的对称点坐标(,).【变式22】(2023春•蒙山县期末)如图,△ABC的顶点A(﹣1,4),B(﹣4,﹣1),C(1,1).若△ABC向右平移4个单位长度,再向下平移3个单位长度得到△A'B'C',且点C的对应点坐标是C'.(1)画出△A'B'C',并直接写出点C'的坐标;(2)若△ABC内有一点P(a,b)经过以上平移后的对应点为P',直接写出点P'的坐标;(3)求△ABC的面积.【典例2】(2022春•交城县期末)在平面直角坐标系中,O为原点,点A(0,2),B(﹣2,0),C(4,0).(Ⅰ)如图①,则三角形ABC的面积为;(Ⅱ)如图②,将点B向右平移7个单位长度,再向上平移4个单位长度,得到对应点D.①求三角形ACD的面积;②点P(m,3)是一动点,若三角形PAO的面积等于三角形CAO的面积.请直接写出点P坐标.【变式21】(2022春•扎兰屯市期末)已知:在平面直角坐标系中,A(0,1),B(2,0),C(4,3)(1)求△ABC的面积;(2)设点P在x轴上,且△ABP与△ABC的面积相等,求点P的坐标.【变式22】(2023春•东港区期末)已知:A(0,1),B(2,0),C(4,3)(1)在坐标系中描出各点,画出△ABC.(2)求△ABC的面积;(3)设点P在坐标轴上,且△ABP与△ABC的面积相等,求点P的坐标.【变式23】(2022春•宜春期末)如图所示,在平面直角坐标系中,点A,B的坐标分别为A(a,0),B(b,0),且a,b满足|a+2|+=0,点C的坐标为(0,3).(1)求a,b的值及S△ABC;(2)若点M在x轴上,且S△ACM=S△ABC,试求点M的坐标.【题型二:平面直角坐标系中规律题探究方法】【典例3】(2022秋•宜都市期中)如图所示,在平面直角坐标系中,一动点从原点O出发,按向上、向右、向下、向右的方向不断移动,每次移动一个单位,得到点A1(0,1),A2(1,1),A3(1,0),A4(2,0),…,那么点A2016的坐标为()A.(1007,0) B.(1008,0) C.(1007,1) D.(1008,1)【变式3】(2022秋•胶州市期末)如图,在平面直角坐标系中,A1(1,﹣2),A2(2,0),A3(3,2),A4(4,0),...根据这个规律,点A2023的坐标是()A.(2022,0) B.(2023,0) C.(2023,2) D.(2023,﹣2)【典例4】(2022春•渝中区校级月考)如图,在平面直角坐标系中,A(2,2),B(﹣2,2),C(﹣2,﹣4),D(2,﹣4),把一条长为4044个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在点A处,并按A→B→C→D→A⋯的规律绕在四边形ABCD的边上,则细线另一端所在位置的点的坐标是()A.(2,2) B.(0,2) C.(﹣2,0) D.(﹣2,2)【变式4】(2022秋•九江期末)如图,长方形BCDE的各边分别平行于x轴或y轴,物体甲和物体乙都从点A(2,0)同时出发,沿长方形BCDE的边作环绕运动,物体甲按逆时针方向以1个单位/秒匀速运动,物体乙按顺时针方向以2个单位/秒匀速运动,则两个物体运动后的第2022次相遇点的坐标是()A.(2,0) B.(﹣1,1) C.(﹣2,0) D.(﹣1,﹣1)【典例5】(2022春•突泉县期末)如图,正方形的边长依次为2,4,6,8,……,他们在直角坐标系中的位置如图所示,其中A1(1,1),A2(﹣1,1),A3(﹣1.﹣1),A1(1,﹣1),A5(2.,2),A6(﹣2,2),A7(﹣2,﹣2),A8(2.﹣2),A9(3,3),A10(﹣3,3),……,按此规律接下去,则A2016的坐标为()A.(﹣504,﹣504) B.(504,﹣504) C.(﹣504,504) D.(504,504)【变式5】(2022春•宜春期末)如图,在平面直角坐标系中,每个最小方格的边长均为1个单位长度,P1,P2,P3,……均在格点上,其顺序按图中“→”方向排列,如:P1(0,0),P2(0,1),P3(1,1),P4(1,﹣1),P5(﹣1,﹣1),P6(﹣1,2)……,根据这个规律,点P2022的坐标为()A.(﹣505,﹣505) B.(505,﹣506) C.(505,505) D.(﹣505,506)【典例6】(2022秋•洛龙区校级月考)如图,在平面直角坐标系上有一点A(1,0),点A第一次向左跳动至点A1(﹣1,1),第二次向右跳动至点A2(2,1),第三次向左跳动至点A3(﹣2,2),第四次向右跳动至点A4(3,2),……以此规律跳动下去,点A第2020次跳动至点A2020的坐标是()A.(1010,1009) B.(1011,1010) C.(1012,1011) D.(1010,1010)【变式6】(2022•岱岳区三模)如图,在平面直角坐标系上有点A(1,0),点A第一次跳动至点A1(﹣1,1),第二次点A1跳动至点A2(2,1),第三次点A2跳动至点A3(﹣2,2),第四次点A3跳动至点A4(3,2),……依此规律跳动下去,则点A2021与点A2022之间的距离是()A.2023 B.2022 C.2021 D.2020【典例7】(2022春•高坪区校级月考)一只跳蚤在第一象限及x轴、y轴上跳动,在第一秒钟,它从原点跳动到(0,1),然后接着按图中箭头所示方向跳动[即(0,0)→(0,1)→(1,1)→(1,0)→……],且每秒跳动一个单位,那么第2022秒时跳蚤所在位置的坐标是()A.(5,44) B.(2,44) C.(4,45) D.(5,45)【变式7】(2022秋•滕州市期末)如图,一个质点在第一象限及x轴、y轴上运动,在第一秒钟,它从原点(0,0)运动到(0,1),然后接着按图中箭头所示方向运动,即(0,0)→(0,1)→(1,1)→(1,0)→⋯,且每秒移动一个单位,那么第35秒时质点所在位置的坐标是()A.(5,0) B.(0,5) C.(6,0) D.(0,6)1.(2021•牡丹江)如图,在平面直角坐标系中A(﹣1,1),B(﹣1,﹣2),C(3,﹣2),D(3,1),一只瓢虫从点A出发以2个单位长度/秒的速度沿A→B→C→D→A循环爬行,问第2021秒瓢虫在()处.A.(3,1) B.(﹣1,﹣2) C.(1,﹣2) D.(3,﹣2)2.(2019•菏泽)在平面直角坐标系中,一个智能机器人接到的指令是:从原点O出发,按“向上→向右→向下→向右”的方向依次不断移动,每次移动1个单位长度,其移动路线如图所示,第一次移动到点A1,第二次移动到点A2……第n次移动到点An,则点A2019的坐标是()A.(1010,0) B.(1010,1) C.(1009,0) D.(1009,1)3.(2019•日照)如图,在单位为1的方格纸上,△A1A2A3,△A3A4A5,△A5A6A7,…,都是斜边在x轴上,斜边长分别为2,4,6,…的等腰直角三角形,若△A1A2A3的顶点坐标分别为A1(2,0),A2(1,1),A3(0,0),则依图中所示规律,A2019的坐标为()A.(﹣1008,0) B.(﹣1006,0) C.(2,﹣504) D.(1,505)4.(2019•阜新)如图,在平面直角坐标系中,将△ABO沿x轴向右滚动到△AB1C1的位置,再到△A1B1C2的位置……依次进行下去,若已知点A(4,0),B(0,3),则点C100的坐标为()A.(1200,) B.(600,0) C.(600,) D.(1200,0)5.(2021•潍坊)在直角坐标系中,点A1从原点出发,沿如图所示的方向运动,到达位置的坐标依次为:A2(1,0),A3(1,1),A4(﹣1,1),A5(﹣1,﹣1),A6(2,﹣1),A7(2,2),….若到达终点An(506,﹣505),则n的值为.6.(2020•朝阳)如图,动点P从坐标原点(0,0)出发,以每秒一个单位长度的速度按图中箭头所示方向运动,第1秒运动到点(1,0),第2秒运动到点(1,1),第3秒运动到点(0,1),第4秒运动到点(0,2)…则第2068秒点P所在位置的坐标是.7.(2019•绥化)在平面直角坐标系中,若干个边长为1个单位长度的等边三角形,按如图中的规律摆放.点P从原点O出发,以每秒1个单位长度的速度沿着等边三角形的边“OA1→A1A2→A2A3→A3A4→A4A5…”的路线运动,设第n秒运动到点Pn(n为正整数),则点P2019的坐标是.1.(2023春•琼海期末)如图,在平面直角坐标系中A(﹣1,1),B(﹣1,﹣2),C(3,﹣2),D(3,1),一只瓢虫从点A出发以2个单位长度/秒的速度沿A→B→C→D→A循环爬行,问第2023秒瓢虫在()处.A.(﹣1,1) B.(﹣1,﹣2) C.(3,﹣2) D.(3,1)2.(2023春•房县期中)横、纵坐标均为整数的点称为整点.如图,一列有规律的整点,其坐标依次为(1,0),(2,0),(2,1),(1,1),(1,2),(2,2),…,根据这个规律,第2022个整点的坐标为()A.(45,3) B.(45,13) C.(45,22) D.(45,0)3.(2023春•通州区期中)如图,已知A1(2,4),A2(4,4),A3(6,0),A4(8,﹣4),A5(10,﹣4),A6(12,0),……,按这样的规律,则点A2023的坐标为()A.(4046,0) B.(4046,4) C.(4046,﹣4) D.(4048,4)4.(2023春•巴南区期末)在平面直角坐标系中,点P1(0,2),P2(1,6),P3(2,12),P4(3,20),…,用你发现的规律确定P8的坐标为()A.(7,56) B.(7,72) C.(8,56) D.(8,72)5.(2023•九龙坡区校级开学)如图,已知A1(1,0),A2(1,1),A3(﹣1,1),A4(﹣1,﹣1),A5(2,﹣1),…则点A2025的坐标为()A.(506,506) B.(﹣506,﹣506) C.(507,﹣506) D.(﹣507,506)6.(2023春•徐闻县期末)如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),…,按这样的运动规律,经过第2023次运动后,动点P的坐标是()A.(2023,1) B.(2023,0) C.(2022,0) D.(2023,2)7.(2023春•海林市校级期中)在平面直角坐标系中,一只蚂蚁从原点O出发,按如图所示方向依次不断移动,每次移动1个单位长度,其行走路线如图所示,则蚂蚁从点A2016到点A2017的移动方向为()A.向左 B.向右 C.向上 D.向下8.(2023春•茌平区期末)如图,在平面直角坐标系xOy中,动点P按图中箭头所示方向依次运动,第1次从点(﹣1,0)运动到点(0,1),第2次运动到点(1,0),第3次运动到点(2,﹣2),…按这样的运动规律,动点P第2023次运动到点()A.(2022,﹣2) B.(2022,1) C.(2023,1) D.(2023,﹣2)9.(2023春•三台县期中)在平面直角坐标系中,一个智能机器人接到的指令是:从原点O出发,按“向上→向右→向下→向右→向下→向右→向上→向右”的方向依次不断运动,每次移动1个单位长度,其移动路线如图所示,第一次移动到点A1,第二次移动到点A2……第n次移动到点An,则点A2022的坐标是()A.(1011,﹣1) B.(1010,﹣1) C.(1011,0) D.(1012,0)10.(2023•沈河区校级模拟)在平面直角坐标系中,对于点P(x,y),我们把点P′(﹣y+1,x+1)叫做点P伴随点,已知点A1的伴随点为A2,点A2的伴随点为A3,点A3的伴随点为A4,…,这样依次得到点A1,A2,A3,…,An,…若点A1的坐标为(2,4),则点A2023的坐标为()A.(3,﹣1) B.(﹣2,﹣2) C.(﹣3,3) D.(2,4)11.(2022秋•锦州期末)如图,一个质点在平面直角坐标系中的第一象限及x轴,y轴的正半轴上运动.在第一秒钟,质点从原点(0,0)运动到(0,1),再继续按图中箭头所示的方向(与x,y轴平行)运动,即(0,0)→(0,1)→(1,1)→(1,0)→(2,0)→…,且每秒移动一个单位长度,那么第2023秒时质点所在位置的坐标为()A.(44,1) B.(1,44) C.(45,0) D.(0,45)12.(2023春•西充县校级期末)在如图所示的平面直角坐标系中,一只蚂蚁从A点出发,沿着A→B→C→D→A…循环爬行,其中A点坐标为(1,﹣1),B点坐标为(﹣1,﹣1),C点坐标为(﹣1,3),当蚂蚁爬了2017个单位时,它所处位置的坐标为()A.(1,1) B.(1,0) C.(0,1) D.(0,﹣1)13.(2023春•米东区校级期末)如图,在平面直角坐标系xOy中,点P(1,0).点P第1次向上跳动1个单位至点P1(1,1),紧接着第2次向左跳动2个单位至点P2(﹣1,1),第3次向上跳动1个单位至点P3,第4次向右跳动3个单位至点P4,第5次又向上跳动1个单位至点P5,第6次向左跳动4个单位至点P6,….照此规律,点P第100次跳动至点P100的坐标是()A.(﹣26,50) B.(﹣25,50) C.(26,50) D.(25,50)14.(2023春•迪庆州期末)如图,在平面直角坐标系中,所有正方形的中心均在坐标原点,且各边与x轴或y轴平行,从内到外,它们的边长依次为2,4,6,8,…,顶点依次用A1,A2,A3,A4
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 广东酒店管理职业技术学院《客舱服务操作与管理》2023-2024学年第一学期期末试卷
- 广东建设职业技术学院《电子商务企业运营沙盘实训》2023-2024学年第一学期期末试卷
- 广东海洋大学《证券与投资》2023-2024学年第一学期期末试卷
- 广东东软学院《大数据处理与智能决策》2023-2024学年第一学期期末试卷
- 《课件工伤保险》课件
- SWOT分析培训课件
- 《经济型连锁酒店》课件
- 赣州师范高等专科学校《教育数据挖掘理论与实践》2023-2024学年第一学期期末试卷
- 赣东学院《生物工程进展与创业指导》2023-2024学年第一学期期末试卷
- 七年级科学上册10.1.1身体降的标志学案无答案牛津上海版
- 江西省景德镇市2023-2024学年高二上学期1月期末质量检测数学试题 附答案
- 2024年办公楼卫生管理制度模版(3篇)
- 船舶防火与灭火(课件)
- 保险公司2024年工作总结(34篇)
- 七、监理工作重点、难点分析及对策
- 2024年01月22503学前儿童健康教育活动指导期末试题答案
- 面膜中蓝铜肽经皮渗透性和改善皮肤衰老作用研究
- 湖北省荆州市八县市2023-2024学年高一上学期1月期末考试 化学 含解析
- 2024年世界职业院校技能大赛中职组“婴幼儿保育组”赛项考试题库-上(单选题)
- 《水文化概论》全套教学课件
- 期末测评(基础卷二)-2024-2025学年一年级上册数学人教版
评论
0/150
提交评论