版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
安徽省阜阳市临泉县达标名校2024届中考三模数学试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(共10小题,每小题3分,共30分)1.已知一个多边形的每一个外角都相等,一个内角与一个外角的度数之比是3:1,这个多边形的边数是A.8 B.9 C.10 D.122.下列运算正确的是()A.a12÷a4=a3 B.a4•a2=a8 C.(﹣a2)3=a6 D.a•(a3)2=a73.由一些大小相同的小正方体搭成的几何体的俯视图如图所示,其中正方形中的数字表示该位置上的小正方体的个数,那么该几何体的主视图是()A. B. C. D.4.若一组数据2,3,4,5,x的平均数与中位数相等,则实数x的值不可能是()A.6 B.3.5 C.2.5 D.15.下列计算正确的是()A.2m+3n=5mnB.m2•m3=m6C.m8÷m6=m2D.(﹣m)3=m36.下列关于x的方程中,属于一元二次方程的是()A.x﹣1=0 B.x2+3x﹣5=0 C.x3+x=3 D.ax2+bx+c=07.如图,在△ABC中,CD⊥AB于点D,E,F分别为AC,BC的中点,AB=10,BC=8,DE=4.5,则△DEF的周长是()A.9.5 B.13.5 C.14.5 D.178.定义运算“※”为:a※b=,如:1※(﹣2)=﹣1×(﹣2)2=﹣1.则函数y=2※x的图象大致是()A. B.C. D.9.如图中任意画一个点,落在黑色区域的概率是()A. B. C.π D.5010.不论x、y为何值,用配方法可说明代数式x2+4y2+6x﹣4y+11的值()A.总不小于1B.总不小于11C.可为任何实数D.可能为负数二、填空题(本大题共6个小题,每小题3分,共18分)11.已知(x-ay)(x+ay),那么a=_______12.已知二次函数,与的部分对应值如下表所示:…-101234……61-2-3-2m…下面有四个论断:①抛物线的顶点为;②;③关于的方程的解为;④.其中,正确的有___________________.13.如图,已知直线m∥n,∠1=100°,则∠2的度数为_____.14.如图,某景区的两个景点A、B处于同一水平地面上、一架无人机在空中沿MN方向水平飞行进行航拍作业,MN与AB在同一铅直平面内,当无人机飞行至C处时、测得景点A的俯角为45°,景点B的俯角为30°,此时C到地面的距离CD为100米,则两景点A、B间的距离为__米(结果保留根号).15.分解因式:=.16.观察下列一组数,,,,,…探究规律,第n个数是_____.三、解答题(共8题,共72分)17.(8分)某公司计划购买A,B两种型号的电脑,已知购买一台A型电脑需0.6万元,购买一台B型电脑需0.4万元,该公司准备投入资金y万元,全部用于购进35台这两种型号的电脑,设购进A型电脑x台.(1)求y关于x的函数解析式;(2)若购进B型电脑的数量不超过A型电脑数量的2倍,则该公司至少需要投入资金多少万元?18.(8分)先化简,再求值:()÷,其中a=+1.19.(8分)某数学教师为了解所教班级学生完成数学课前预习的具体情况,对该班部分学生进行了一学期的跟踪调查,将调查结果分为四类并给出相应分数,A:很好,95分;B:较好75分;C:一般,60分;D:较差,30分.并将调查结果绘制成以下两幅不完整的统计图,请你根据统计图解答下列问题:(Ⅰ)该教师调查的总人数为,图②中的m值为;(Ⅱ)求样本中分数值的平均数、众数和中位数.20.(8分)先化简代数式,再从范围内选取一个合适的整数作为的值代入求值。21.(8分)如图,一根电线杆PQ直立在山坡上,从地面的点A看,测得杆顶端点P的仰角为45°,向前走6m到达点B,又测得杆顶端点P和杆底端点Q的仰角分别为60°和30°,求电线杆PQ的高度.(结果保留根号).22.(10分)请根据图中提供的信息,回答下列问题:一个水瓶与一个水杯分别是多少元?甲、乙两家商场同时出售同样的水瓶和水杯,为了迎接新年,两家商场都在搞促销活动,甲商场规定:这两种商品都打八折;乙商场规定:买一个水瓶赠送两个水杯,另外购买的水杯按原价卖.若某单位想要买5个水瓶和n(n>10,且n为整数)个水杯,请问选择哪家商场购买更合算,并说明理由.(必须在同一家购买)23.(12分)如图,△ABC中,点D在边AB上,满足∠ACD=∠ABC,若AC=,AD=1,求DB的长.24.尺规作图:校园有两条路OA、OB,在交叉路口附近有两块宣传牌C、D,学校准备在这里安装一盏路灯,要求灯柱的位置P离两块宣传牌一样远,并且到两条路的距离也一样远,请你帮助画出灯柱的位置P.(不写画图过程,保留作图痕迹)
参考答案一、选择题(共10小题,每小题3分,共30分)1、A【解题分析】试题分析:设这个多边形的外角为x°,则内角为3x°,根据多边形的相邻的内角与外角互补可的方程x+3x=180,解可得外角的度数,再用外角和除以外角度数即可得到边数.解:设这个多边形的外角为x°,则内角为3x°,由题意得:x+3x=180,解得x=45,这个多边形的边数:360°÷45°=8,故选A.考点:多边形内角与外角.2、D【解题分析】
分别根据同底数幂的除法、乘法和幂的乘方的运算法则逐一计算即可得.【题目详解】解:A、a12÷a4=a8,此选项错误;
B、a4•a2=a6,此选项错误;
C、(-a2)3=-a6,此选项错误;
D、a•(a3)2=a•a6=a7,此选项正确;
故选D.【题目点拨】本题主要考查幂的运算,解题的关键是掌握同底数幂的除法、乘法和幂的乘方的运算法则.3、A【解题分析】
由三视图的俯视图,从左到右依次找到最高层数,再由主视图和俯视图之间的关系可知,最高层高度即为主视图高度.【题目详解】解:几何体从左到右的最高层数依次为1,2,3,所以主视图从左到右的层数应该为1,2,3,故选A.【题目点拨】本题考查了三视图的简单性质,属于简单题,熟悉三视图的概念,主视图和俯视图之间的关系是解题关键.4、C【解题分析】
因为中位数的值与大小排列顺序有关,而此题中x的大小位置未定,故应该分类讨论x所处的所有位置情况:从小到大(或从大到小)排列在中间;结尾;开始的位置.【题目详解】(1)将这组数据从小到大的顺序排列为2,3,4,5,x,
处于中间位置的数是4,
∴中位数是4,
平均数为(2+3+4+5+x)÷5,
∴4=(2+3+4+5+x)÷5,
解得x=6;符合排列顺序;
(2)将这组数据从小到大的顺序排列后2,3,4,x,5,
中位数是4,
此时平均数是(2+3+4+5+x)÷5=4,
解得x=6,不符合排列顺序;
(3)将这组数据从小到大的顺序排列后2,3,x,4,5,
中位数是x,
平均数(2+3+4+5+x)÷5=x,
解得x=3.5,符合排列顺序;
(4)将这组数据从小到大的顺序排列后2,x,3,4,5,
中位数是3,
平均数(2+3+4+5+x)÷5=3,
解得x=1,不符合排列顺序;
(5)将这组数据从小到大的顺序排列后x,2,3,4,5,
中位数是3,
平均数(2+3+4+5+x)÷5=3,
解得x=1,符合排列顺序;
∴x的值为6、3.5或1.
故选C.【题目点拨】考查了确定一组数据的中位数,涉及到分类讨论思想,较难,要明确中位数的值与大小排列顺序有关,一些学生往往对这个概念掌握不清楚,计算方法不明确而解答不完整.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数.如果数据有奇数个,则正中间的数字即为所求;如果是偶数个,则找中间两位数的平均数.5、C【解题分析】
根据同底数幂的除法,底数不变指数相减;合并同类项,系数相加字母和字母的指数不变;同底数幂的乘法,底数不变指数相加;幂的乘方,底数不变指数相乘,对各选项计算后利用排除法求解.【题目详解】解:A、2m与3n不是同类项,不能合并,故错误;B、m2•m3=m5,故错误;C、正确;D、(-m)3=-m3,故错误;故选:C.【题目点拨】本题考查同底数幂的除法,合并同类项,同底数幂的乘法,幂的乘方很容易混淆,一定要记准法则才能做题.6、B【解题分析】
根据一元二次方程必须同时满足三个条件:①整式方程,即等号两边都是整式;方程中如果有分母,那么分母中无未知数;②只含有一个未知数;③未知数的最高次数是2进行分析即可.【题目详解】A.未知数的最高次数不是2
,不是一元二次方程,故此选项错误;
B.
是一元二次方程,故此选项正确;
C.
未知数的最高次数是3,不是一元二次方程,故此选项错误;
D.
a=0时,不是一元二次方程,故此选项错误;
故选B.【题目点拨】本题考查一元二次方程的定义,解题的关键是明白:一元二次方程必须同时满足三个条件:①整式方程,即等号两边都是整式;方程中如果有分母,那么分母中无未知数;②只含有一个未知数;③未知数的最高次数是2.7、B【解题分析】
由三角形中位线定理和直角三角形斜边上的中线等于斜边的一半解答.【题目详解】∵在△ABC中,CD⊥AB于点D,E,F分别为AC,BC的中点,∴DE=AC=4.1,DF=BC=4,EF=AB=1,∴△DEF的周长=(AB+BC+AC)=×(10+8+9)=13.1.故选B.【题目点拨】考查了三角形中位线定理和直角三角形斜边上的中线,三角形的中位线平行于第三边,且等于第三边的一半.8、C【解题分析】
根据定义运算“※”为:a※b=,可得y=2※x的函数解析式,根据函数解析式,可得函数图象.【题目详解】解:y=2※x=,当x>0时,图象是y=对称轴右侧的部分;当x<0时,图象是y=对称轴左侧的部分,所以C选项是正确的.【题目点拨】本题考查了二次函数的图象,利用定义运算“※”为:a※b=得出分段函数是解题关键.9、B【解题分析】
抓住黑白面积相等,根据概率公式可求出概率.【题目详解】因为,黑白区域面积相等,所以,点落在黑色区域的概率是.故选B【题目点拨】本题考核知识点:几何概率.解题关键点:分清黑白区域面积关系.10、A【解题分析】
利用配方法,根据非负数的性质即可解决问题;【题目详解】解:∵x2+4y2+6x-4y+11=(x+3)2+(2y-1)2+1,
又∵(x+3)2≥0,(2y-1)2≥0,
∴x2+4y2+6x-4y+11≥1,
故选:A.【题目点拨】本题考查配方法的应用,非负数的性质等知识,解题的关键是熟练掌握配方法.二、填空题(本大题共6个小题,每小题3分,共18分)11、±4【解题分析】
根据平方差公式展开左边即可得出答案.【题目详解】∵(x-ay)(x+ay)=又(x-ay)(x+ay)∴解得:a=±4故答案为:±4.【题目点拨】本题考查的平方差公式:.12、①③.【解题分析】
根据图表求出函数对称轴,再根据图表信息和二次函数性质逐一判断即可.【题目详解】由二次函数y=ax2+bx+c(a≠0),y与x的部分对应值可知:该函数图象是开口向上的抛物线,对称轴是直线x=2,顶点坐标为(2,-3);与x轴有两个交点,一个在0与1之间,另一个在3与4之间;当y=-2时,x=1或x=3;由抛物线的对称性可知,m=1;①抛物线y=ax2+bx+c(a≠0)的顶点为(2,-3),结论正确;②b2﹣4ac=0,结论错误,应该是b2﹣4ac>0;③关于x的方程ax2+bx+c=﹣2的解为x1=1,x2=3,结论正确;④m=﹣3,结论错误,其中,正确的有.①③故答案为:①③【题目点拨】本题考查了二次函数的图像,结合图表信息是解题的关键.13、80°.【解题分析】
如图,已知m∥n,根据平行线的性质可得∠1=∠3,再由平角的定义即可求得∠2的度数.【题目详解】如图,∵m∥n,∴∠1=∠3,∵∠1=100°,∴∠3=100°,∴∠2=180°﹣100°=80°,故答案为80°.【题目点拨】本题考查了平行线的性质,熟练运用平行线的性质是解决问题的关键.14、100+100【解题分析】【分析】由已知可得∠ACD=∠MCA=45°,∠B=∠NCB=30°,继而可得∠DCB=60°,从而可得AD=CD=100米,DB=100米,再根据AB=AD+DB计算即可得.【题目详解】∵MN//AB,∠MCA=45°,∠NCB=30°,∴∠ACD=∠MCA=45°,∠B=∠NCB=30°,∵CD⊥AB,∴∠CDA=∠CDB=90°,∠DCB=60°,∵CD=100米,∴AD=CD=100米,DB=CD•tan60°=CD=100米,∴AB=AD+DB=100+100(米),故答案为:100+100.【题目点拨】本题考查了解直角三角形的应用﹣﹣仰角俯角问题,解题的关键是借助俯角构造直角三角形并解直角三角形.注意方程思想与数形结合思想的应用.15、a(a+2)(a-2)【解题分析】
16、【解题分析】
根据已知得出数字分母与分子的变化规律,分子是连续的正整数,分母是连续的奇数,进而得出第n个数分子的规律是n,分母的规律是2n+1,进而得出这一组数的第n个数的值.【题目详解】解:因为分子的规律是连续的正整数,分母的规律是2n+1,
所以第n个数就应该是:,
故答案为.【题目点拨】此题主要考查了数字变化规律,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.解题的关键是把数据的分子分母分别用组数n表示出来.三、解答题(共8题,共72分)17、(1)y=0.2x+14(0<x<35);(2)该公司至少需要投入资金16.4万元.【解题分析】
(1)根据题意列出关于x、y的方程,整理得到y关于x的函数解析式;(2)解不等式求出x的范围,根据一次函数的性质计算即可.【题目详解】解:(1)由题意得,0.6x+0.4×(35﹣x)=y,整理得,y=0.2x+14(0<x<35);(2)由题意得,35﹣x≤2x,解得,x≥,则x的最小整数为12,∵k=0.2>0,∴y随x的增大而增大,∴当x=12时,y有最小值16.4,答:该公司至少需要投入资金16.4万元.【题目点拨】本题考查的是一次函数的应用、一元一次不等式的应用,掌握一次函数的性质是解题的关键.18、,.【解题分析】
根据分式的减法和除法可以化简题目中的式子,然后将a的值代入化简后的式子即可解答本题.【题目详解】解:()÷====,当a=+1时,原式==.【题目点拨】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.19、(Ⅰ)25、40;(Ⅱ)平均数为68.2分,众数为75分,中位数为75分.【解题分析】
(1)由直方图可知A的总人数为5,再依据其所占比例20%可求解总人数;由直方图中B的人数为10及总人数可知m的值;(2)根据平均数、众数和中位数的定义求解即可.【题目详解】(Ⅰ)该教师调查的总人数为(2+3)÷20%=25(人),m%=×100%=40%,即m=40,故答案为:25、40;(Ⅱ)由条形图知95分的有5人、75分的有10人、60分的有6人、30分的有4人,则样本分知的平均数为(分),众数为75分,中位数为第13个数据,即75分.【题目点拨】理解两幅统计图中各数据的含义及其对应关系是解题关键.20、-2【解题分析】
先根据分式的混合运算顺序和运算法则化简原式,再选取使分式有意义的x的值代入计算可得.【题目详解】原式===,∵x≠±1且x≠0,∴在-1≤x≤2中符合条件的x的值为x=2,则原式=-=-2.【题目点拨】此题考查分式的化简求值,解题关键在于掌握运算法则.21、(6+)米【解题分析】
根据已知的边和角,设CQ=x,BC=QC=x,PC=BC=3x,根据PQ=BQ列出方程求解即可.【题目详解】解:延长PQ交地面与点C,由题意可得:AB=6m,∠PCA=90°,∠PAC=45°,∠PBC=60°,∠QBC=30°,设CQ=x,则在Rt△BQC中,BC=QC=x,∴在Rt△PBC中PC=BC=3x,∵在Rt△PAC中,∠PAC=45°,则PC=AC,∴,3x=6+x,解得x==3+,∴PQ=PC-CQ=3x-x=2x=6+,则电线杆PQ高为(6+)米.【题目点拨】此题重点考察学生对解直角三角形的理解,掌握解直角三角形的方法是解题的关键.22、(1)一个水瓶40元,一个水杯是8元;(2)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 万达商业广场2024年物业综合管理协议版B版
- 论文答辩精要解析
- 2025年度拆迁安置住房租赁及物业管理合同4篇
- 二零二五年度建筑工程项目建造师劳动合同范本9篇
- 2025年度产教融合校企产学研合作项目执行框架协议4篇
- 二零二五年度餐厅经理劳动合同范本:服务质量提升3篇
- 二零二四年事业单位委托第三方社保代缴与员工绩效奖励协议3篇
- 二零二五年度大米产品绿色包装与环保材料应用合同2篇
- 2024饲料行业客户数据共享协议
- 2025年度商业地产项目场地租赁及物业管理合同12篇
- 国家自然科学基金项目申请书
- 电力电缆故障分析报告
- 中国电信网络资源管理系统介绍
- 2024年浙江首考高考选考技术试卷试题真题(答案详解)
- 《品牌形象设计》课件
- 仓库管理基础知识培训课件1
- 药品的收货与验收培训课件
- GH-T 1388-2022 脱水大蒜标准规范
- 高中英语人教版必修第一二册语境记单词清单
- 政府机关保洁服务投标方案(技术方案)
- HIV感染者合并慢性肾病的治疗指南
评论
0/150
提交评论