版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
地理信息科学进展地理空间大数据Big
Geo-Spatial
DataBig
DataGartner
Big
data
is
high
volume,
high
velocity,
and/or
high
varietyinformation
assets
that
require
new
forms
of
processing
to
enabenhanced
decision
making,
insight
discovery
and
processoptimization.(Douglas
2012)CharacteristicsVolumeVarietyVelocityVariabilityVeracityComplexityChallengesAnalysisCaptureData
curationSearchSharingStorageTransferVisualizationInformation
privacyTools
for
Big
DataSTACKELEMENTUSED
FOROPEN
SOURCEEXAMPLESCOTS
EXAMPLESVisualizationUser
InterfaceWeb-based
ToolsGephi,D3js,OzoneTableau,
Centrifuge,Visual
AnalyticsAnalyticsMachine
learningStatistical
toolsSAS,MapR,SPSS,PalanCrData
StoreData
&
MetadataSource
DataIndexesR,Titan,Spark,Hive,HDFS,Mahout,OpenCV,Lumify,PigAccumulo,MongoDB,
Cassandra,Titan,
Neo4j,MySQLOracle,YarcData,Marklogic,TeradataIngestTransformaCon
/
NormalizaConIngest
/
Streams
ProcessingStorm,Hadoop/MapReduceSplunk,
SAS,Oracle,
IBMInfrastructure(IaaS,
PaaS)CM,
Scheduling,
MonitoringApplication
Operating
SystemsComputers,
NetworksLinux,Puppet,Oozie,HDFS,JBoss,OpenShift,OpenStack,Zookeeper,Kafka,XymonAWS,
Azure,Cloudera,
Red
Hat,Rackspace,vendor
SpecificBig
Geospatial
DataGeography
and
big
data
(Graham
2013)
Much
of
big
data
are
geographic
in
nature
and
contaeither
explicit
or
implicit
spatial
information,
…fundamentally
new
ways
of
knowing,
enacting
and
beithe
world.
Big
data
allow
us
to
objectively
measure
and
map
thworld
as
it
actually
is
in
order
to
arrive
atfundamental
truths.Big
geospatial
data4V:
Volume,
Velocity,
Variety,
Valueassociated
with
an
individualwith
spatio-temporal
tag
taxi
trajectories,
mobile
phone
records,
social
medsocial
networking
data,
smart
card
records
in
publiSocial
SensingSocial
Sensing
(Liu
2015)
Social
sensing
refers
to
a
category
of
spatio-temporally
taggedbig
data
that
provide
an
observatory
for
human
behavior,
as
welas
the
methods
and
applications
based
on
such
big
data.
The
major
objective
of
social
sensing
is
to
detect
socio-economcharacteristics
in
geographical
space
and
thus
it
can
be
vieweda
complement
to
remote
sensing.urban
area
of
Shanghaicheck-in
pointsdrop-off
pointspick-up
pointspopulation
densityfrequency
distributionsglobal
temporal
variationslocal
temporal
variationsArchitecture
of
Social
SensingApplications
of
Social
Sensing
(1)ensitiesSensing
temporal
activity
variatPiicko-unps
and
drop-offs
of
Taxi
Trips,
Shanghai
(Liu
2012)Temporal
patternsDiurnal
rhythm
of
activity
dMobile
phonecalls,
Harbin(Kang
2012)Difference
of
pick-ups
and
drop-offs
of
Taxi
Trips,
Shanghai
(Lcheck-in
activitiesin
citiesof
ChinaApplications
of
Social
Sensing
(2)ns
or
citiesSensing
spatial
interactionsspatial
interactionindividual:
social
tiescollective:
interactions
between
regiospatially-embedded
network(Liu
2014)Spatial
interaction
inside
a
cityand
Community
detectionfrom
the
network
formed
by
taxi
flows(Liu
2012)Flows
between
sub-regionAnd
the
temporal
variatioApplications
of
Social
Sensing
(3)Sensing
place
semantics
and
sentimentsFlickrphotos
in
ParisThe
200
most
frequent
tagsThe
kernel
density
estimation
of
the
geo-tagged
photosassociated
with
Eiffel
Tower
and
Seine
RiverToponym
co-occurrence
in
Web
pages,
and
Regionalization
(Liu
2014)IdentifyinghotspotsfromsocialmediadUrban
ComputingUrban
Computing
(Zheng
2014)
Urban
computing
is
a
process
of
acquisition,
integration,
andanalysis
of
big
and
heterogeneous
data
generated
by
a
diversityof
sources
in
urban
spaces,
such
as
sensors,
devices,
vehicles,buildings,
and
human,
to
tackle
the
major
issues
that
cities
fae.g.
air
pollution,
increased
energy
consumption
and
trafficcongestion.
Urban
computing
connects
unobtrusive
and
ubiquitous
sensingtechnologies,
advanced
data
management
and
analytics
models,
annovel
visualization
methods,
to
create
win-win-win
solutions
thimprove
urban
environment,
human
life
quality,
and
city
operatisystems.
Urban
computing
also
helps
us
understand
the
nature
of
urbanphenomena
and
even
predict
the
future
of
cities.Contents
of
Urban
ComputingUrban
sensing
and
data
acquisitionunobtrusively
and
continually
collect
data
in
a
citywide
scalea
variety
of
sensors:
mobile
phones,
vehicles,
cameras,
loops,
human
as
a
sensor:
user
generated
content
(check
in,
photos,tweets)trade
off
among
energy,
privacy
and
the
utility
of
the
dataloose-controlled
and
nonuniform
distributed
sensorsunstructured,
implicit,
and
noise
dataComputing
with
heterogeneous
data
sourceslearn
mutually
reinforced
knowledge
from
heterogeneous
databoth
effective
and
efficient
learning
abilitydata
management
+
mining
+
machine
LearningvisualizationHybrid
systems
blending
the
physical
and
virtual
worldsserving
both
people
and
cities
(virtually
and
physically)hybrid
systems:
mobile
+
cloud,
crowd
sourcing,
participatoryArchitecture
of
Urban
ComputingApplications
of
Urban
Computing
(1)Finding
the
underlying
problem
of
Beijing’s
road
network
using
taxi
trajectories
(Zheng
2011,
Yuan
2012)Identifying
functional
regions
in
a
city
using
human
mobility
and
POIs
(Yuan
&
Zheng
2012)Applications
of
Urban
Computing
(2)T-Drive:
driving
directions
based
on
taxi
trajectories
(Yuan
and
Zheng
2010,
2011,
2013)Improving
taxi
services.
T-Finder
(Yuan
and
Zheng
2011,
2014),
T-Share
(Ma
and
Zheng
2013])Applications
of
Urban
Computing
(3)Monitoring
real-time
and
fine-grained
air
qualityusing
big
data
(Zheng
2013,
2014)Diagnosing
the
noise
pollution
of
New
York
City
(Zheng
2014)Inferring
gas
consumption
and
pollution
emission
from
vehiclesbased
on
sparse
trajectories
(Shang
&
Zheng
2014)Applications
of
Urban
Computing
(4)Detecting
anomalies
from
urban
traffic
based
on
distance
(Liu
&
Zheng2011)时空大数据的数据模型时空位置模型锚点建模静态位置、或时空过程中停留时间较长的位置P
=(x,y,T,W)或P
=(g,T,W)时空轨迹模型移动对象模型为主体,一组离散的时空点序列Tr
=
(o,
{x1,y1,t1}…
{xj,yj,tj}…)时空交互模型两个位置对象之间交互量的时间变化模型F(Pi→Pj)
=
(xi,
yi,
xj,
yj,
T,
WPi→Pj)F(Pi→Pj)
=
(gi,
gj,
T,
WPi→Pj)时空网络模型点对象之间的时态交互映射为图结构G
=
(V,
E)时空位置大数据Place
&
LocationPosition
DataPoint
of
Interest
(POI)Area
of
Interest
(AOI)Place
nameTextWebSearch
EngineGeotagged
DataTextPhotoSocial
media……百度定位大数据:热力图GeoTagTaggingTagging
is
a
classic
way
for
users
to
annotate
user-generated
conten
The
vocabulary
system
is
entirely
flat
and
directly
reflect
the
concand
linguistic
structure
of
the
users
and
their
diverse
geographicalcultural
backgrounds
(Guy
2006)Geotag
Geotag:
contains
geographic
coordinates,
extent,
shape,
or
feature
tinformation.Geotaggingassigns
geographic
locations
to
content
(Amitay
2004
)refers
to
“tagging”
georeferenced
metadata
to
a
document
or
other
contentWikipedia
Geotaguses
single
points
and
bounding
rectanglesgeoreferenced
information
is
embedded
into
articles
using
one
of
manymicroformats
and
extensions
to
Wikitext
,
Wikipedia’s
content
markup
languagGeotagged
Social
media
dataGeotagged
TweetsGeotagged
Flickr
photosGeotagged
YouTube
videosExploring
Urban
Areas
of
InterestUrban
AOIs/SP_DEMOS/UrbanAOIsUsing
Flickr
dataGeneral
metadatalocations,
time,
photo
id,
owner
id,
server
id,…Text
tagswhat
are
people
talking
about
here?Photoswhat
are
people
looking
at
here?检索大数据:百度旅游检索《心花路放》热映火了“梧桐客栈”“新丝绸之路经济带”的发展带动西部旅游百度检索大数据:预测旅游每天消费者在百度平台的旅游类搜索超过2200万次覆盖旅游人群2.12亿其中无线端覆盖人群1.77亿。通过海量检索行为,预测旅游市场趋势国内旅游景点可以提前2天预测国内城市旅游可以提前45天预测出国旅游可以提前45天预测国内游检索大数据与市场数据呈现相同的增长趋势两者表现出强正相关出境游检索数据提前预知市场数据白色:检索数据橙色:市场数据12·31上海外滩踩踏事件分析12·31上海外滩踩踏事件2014年12月31日23时35分许,跨年夜活动外滩陈毅广场进入和退出的人流对冲发生踩踏事件大数据分析(百度研究院大数据实验室)当时的人流量大到什么程度?事发当时是否是当晚人流量最大的时候?当时人流的对冲到底是什么样的程度?群体聚集是突发情况,可以预警吗?人群热力图人群流量趋势图上海外滩踩踏事件大数据分析(1)中秋前夜(2)国庆当晚(3)跨年当晚人群分布热力图人群流动方向图人群流动方向分布外滩地图搜索与人群到达数量的互相关性互相关性曲线在-1.5小时的时候达到峰值:根据地图上相关地点搜索的请求量,至少可能提前几十分钟预测出人流量峰值的到来时空轨迹大数据按采样方式和驱动因素分类(李婷2014)基于等时间间隔采样的轨迹数据,如车载GPS数据基于位置采样的轨迹数据,如居民出行调查数据基于事件触发的轨迹数据,如手机定位数据、公交车刷卡数据按涉及的交通出行方式分类(周涛2013)单一出行方式数据,如出租车、公交车数据等混合出行方式数据,如手机、签到数据等按采集的位置信息格式分类基于GPS的轨迹数据,有精确的经纬度信息,如出租车、微博签到等
基于参考点的轨迹数据,如手机定位数据、公交车/地铁刷卡数据、wifi数据等Trajectory
Data
MiningSpatial
Trajectories
Computing
Framework
(Zheng
2015)人类移动性(human
mobility)面向人的活动模式研究每个人的活动如同分子运动,看似杂乱无序,实则存在潜在的模式发现这种模式并揭示其影响因素,需要采集海量的时空轨迹数据基于时空轨迹大数据的移动性研究特征量分析和特征建模时间空间研究对象个体群体驱动机制基于移动的模式基于活动的模式百度迁徙人类移动性:时间特征时间特征量:间隔时间人类行为在时间上具有惊人相似的统计规律(周涛2013)
间隔时间和等待时间的分布,在绝大多数情况下具有胖尾的特性,很多可以用幂律分布较好刻画(Barabasi
2005)人类行为在发生时间上具有“强阵发弱记忆”的特性(Goh
2008)阵发性:事件会在较短时间内密集发生,然后又会出现一个很长的空档期记忆性:长的时间间隔后容易跟着一个也较长的时间间隔,而短的时间间隔后面容易跟着一个也较短的时间间隔人类行为具有明显的波动性和周期性(Ahas
2010)时间特征建模基于优先级的排队论模型,可以很好解释等待时间的幂律分布(Barabasi
2005)
历史记忆特性(Vazquez
2007)、兴趣变化(Han
2008)以及生理周期和工作周期的影响(Hidalgo
2006)人类移动性:空间特征量(1)步长分布
基于多个城市的出租车数据发现,移动步长一般在城市尺度内表现为指数分布,在城市间或者更高尺度内表现为幂律分布(Liang
2013)
针对混合交通方式出行,移动步长服从幂律或截断型幂律分布;而对于单一交通方式,则服从指数或近似指数分布(陆锋2014)
利用手机数据发现,群体移动步长服从尾部截断的幂律分布。实际是个体的Levy移动和人群异质性卷积的效果(Gonzalez
2008)
群体水平上人类移动步长的幂律分布可能是移动模式各不相同的若干个体混合所致的,并不能据此推断每个个体的移动步长也服从相同的分布规律
在个体水平上,人类的移动步长分布呈现不规则的多样化特征,并不服从某种特定的分布形式角度分布随机游走模型中,假设角度分布是均匀的
由于受到道路网、地理环境的影响,角度分布会出现各向异性的特点
(Liu
2012,Jiang
2009)人类移动性:空间特征量(2)回转半径(ROG)
利用手机数据发现,人类空间运动具有高度的有界性特征(Gonzalez2008)每个个体都在一个以家和工作地点为中心的有限范围内活动距离家或工作地越近的地点被个体访问的频率就越高人类的空间运动范围具有局域化的特点无论是轨迹的均方位移、回转半径还是时空概率密度函数,增长速度都慢于具有相同参数的Lévy飞行模型熵个体轨迹序列的信息熵(Song
2010)平均意义上,手机用户在下一小时所在地点的不确定性只有20.8人类空间模式具有93%的可预测性人类移动性:空间特征建模移动模式建模考虑的因素(刘瑜2014)地理环境、距离衰减以及个体的空间行为特征重力模型对于地理环境和距离衰减的影响,通常采用重力模型以及其改进模型采用重力模型解释上海市出租车出行步长分布呈截断幂律特征非对等的重力模型,更好地解释了出租车移动步长的分布特征(Liang
2013)辐射模型(Simini
2012):直接采用人口数作为区域规模来检查重力模型并不合个体空间行为特征建模偏好返回模型(Song
2010)人类同时具有探索未知地点和返回之前熟悉地点的倾向基于层次性交通系统的人类运动模型(Han
2011)人们进行日常的长途旅行时,经常通过大的交通中心进行中转带有返家机制的Lévy飞行模型(Hu
2011)基于个体在游走的过程中希望访问更多不同的地点,以获取尽可能多样的信息的假设,将其转为信息熵优化模型基于个体的活动转移模型(Wu
2014)集成个体活动链转移概率、地理环境异质性以及距离衰减等因素NetworksNetworknodes
–
links
structurerandom
networkComplex
Networka
graph
(network)
with
non-trivial
topological
featuresfeatures
that
do
not
occur
in
simple
networks
(lattices
or
random
graphs),but
often
occur
in
graphs
modelling
real
systemsScale-free
networkspower-law
degree
distributionsSmall-world
networksshort
path
lengths
(small
diameter),
and
high
clusteringsmall-world
phenomenon
(six
degrees
of
separation)Social
Network
a
social
structure
made
up
of
a
set
of
social
actors
(such
as
individor
organizations)
and
a
set
of
the
dyadic
ties
between
these
actors.Spatial
NetworkSpatialNetwork
(Barthélemy
2011)
a
network
for
which
the
nodes
are
located
in
a
space
equippedwith
a
metric.space
is
the
two-dimensional
space
and
the
metric
is
the
usualEuclidean
distancelinks
are
not
necessarily
embedded
in
space
the
probability
of
finding
a
link
between
two
nodes
will
decreawith
the
distancethe
connection
probability
between
two
individuals
usually
decreawith
the
distance
between
themSpatial
network
typologyplanar
networksa
network
with
no
crossing
componentsfor
many
applications,
planar
spatial
networks
are
the
most
imporroads,
rail,
rail,
and
other
transportation
networks.it
does
not
imply
that
a
spatial
network
is
always
planarspatial,
non-planar
networksairline
network,
the
cargo
ship
network,
or
the
InternetCategoreis
of
Spatial
NetworksTransportation
networksairline
networksbus,
subway,
and
railway,
networkscargo
ship
networkscommuters
networksInfrastructure
networksroad
and
street
networkspower
grids
networkswater
distribution
networksInternetgeography
in
social
networksOrigin-destination
matrix
and
mobility
networksMobile
phone
and
GPSRFIDs
(Radio
Frequency
Identification)Gravity
Law
for
Spatial
NetworksThe
gravity
law
the
number
of
trips
from
location
i
to
location
j
follows
the‘Gravity’
law
(Erlander
1990)dij
is
the
Euclidean
distance
between
these
two
locationsPi(j)is
the
population
at
location
i(j)σ
is
an
exponent
whose
value
act
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 吉首大学《基础和声1》2021-2022学年第一学期期末试卷
- 吉首大学《操作系统》2021-2022学年期末试卷
- 《机床夹具设计》试卷11
- 吉林艺术学院《虚拟现实应用设计》2021-2022学年第一学期期末试卷
- 吉林艺术学院《民族音乐概论Ⅰ》2021-2022学年第一学期期末试卷
- 吉林艺术学院《广播电视概论》2021-2022学年第一学期期末试卷
- 2024年公租房摊位出租协议书模板
- 2024年大枣代加工协议书模板范本
- 关于尾款支付的协议书范文模板
- 2022年公务员多省联考《申论》真题(陕西B卷)及答案解析
- 部编版一年级语文上册拼音8《zh-ch-sh-r》精美课件
- 社区工作者经典备考题库(必背300题)
- 初中数学人教七年级下册第六章 实数 《实数》说课PPT
- 部编版《美丽的小兴安岭》第二课时(完美版)课件
- 《湘夫人》课件36张
- 混凝土建筑结构设计顾祥林混凝土结构设计概论
- 动物疫病防治员(高级)理论考试题库大全-下(单选、判断600题)
- 初中一年级学生家长会课件
- 相机检定报告-5d2参数
- 第九章-化工装置运行安全技术课件
- 关于货运代理有限公司的物流服务方案设计毕业设计
评论
0/150
提交评论