2015年考研数学全年复习计划大纲_第1页
2015年考研数学全年复习计划大纲_第2页
2015年考研数学全年复习计划大纲_第3页
2015年考研数学全年复习计划大纲_第4页
2015年考研数学全年复习计划大纲_第5页
已阅读5页,还剩5页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2015年考研数学全年复习计划大纲以下是2015考研数学全年复习计划,希望对大家有所帮助。一、考研数学学习阶梯划分:一阶基础全面复习(3月~6月)二阶强化熟悉题型(7月~10月)三阶模考查缺补漏(11月~12月15日)四阶点睛保持状态(12月16日~考试前)二、考研数学参考书目:必备参考资料:数学考试大纲《高等数学》同济版:讲解比较细致,例题难度适中,涉及内容广泛,是现在高校中采用比较广泛的教材,配套的辅导教材也很多。《线性代数》同济版:轻薄短小,简明易懂,适合基础不好的学生。《线性代数》清华版:适合基础比较的学生《概率论与数理统计初步》浙大版:基本的题型课后习题都有覆盖。历年真题三、考研数学复习规划1、一阶基础,全面复习(3月~6月)学习目标:根据去年考研数学大纲要求结合教材对应章节系统复习,打好基础,特别是对大纲中要求的三基——基本概念、基本理论、基本方法要系统理解和掌握。完成从大学学习到考研备战的基础准备。复习建议:这一阶段主要的焦点要集中精力把教材好好地梳理,要至始至终不留死角和空白,按大纲要求结合教材对应章节全面复习,另外按章节顺序完成教材及相应的配套练习题,通过练习检验你是否真正地把教材的内容掌握了。由于教材的编写是环环相扣,易难递进的,所以建议每天学习新内容前要复习前面的内容,按照规律来复习,经过必要的重复会起到事半功倍的效果。也就是重视基础,长期积累;基础阶段重视纵向学习,夯实知识点。2、二阶强化熟悉题型(7月~10月)本阶段是考研复习的重点,对成败起决定性作用。大体可以分两轮学习。第一轮暑期强化:7~8月学习目标:熟悉考研题型,加强知识点的前后联系,分清重难点,让复习周期尽量缩短,把握整体的知识体系,熟练掌握定理公式和解题技巧复习建议:参加考研教育网强化班学习,根据老师辅导讲义认真研读,做到举一反三。这一时期大课老师所教学的例题都是经过严格筛选、归纳,可以说会更准确、更有针对性。在学习过程中对重点、难点一定做笔记,便于下一轮复习。第二轮秋季强化:9~10月学习目标:通过真题讲解和训练,进一步提高解题能力和技巧,达到实际考试的要求复习建议:根据老师课堂所讲真题课后进行专项复习,对考试重点题型和自己薄弱的内容进行攻坚复习,达到全面掌握,不留空白和软肋,让训练达到或稍微超过真题难度。3、三阶模考查缺补漏(11月~12月15日)学习目标:这一阶段的目标是保住自己在前两个阶段的成果。1、通过对以往学习笔记的复习全面掌握考试要求;2、进行高强度(高于考试强度)的冲刺题训练,进入考试状态,达到考试要求。复习建议:建议考生要做到:1、通过做题进行总结和梳理(做题训练应当重点放在按考试要求的套题);2、复习教材和笔记进行必要的记忆,对基本概念、基本公式、基本定理进行记忆,尤其是平时不常用的、记忆模糊的公式,经常出错的要重点记忆;3、开始进行模拟试题或者真题的实战演练,在这个过程中,注意答卷时间的分配,重视考场心态的调整。4、第四阶点睛保持状态(12月15日~考试前)学习目标:考前重点题型,应考技巧训练,保持状态复习建议:多看之前做过的真题,并将自己整理的笔记或总结的重点习题再仔细看看,更佳提高针对性,加深记忆。在此基础上,按照考试时间去做一些强度不太大的模拟题或是真题,保持手感,以免到了考场思路断电,手生。同时还要调整心态,积极备考,以良好的状态到考场。四、建议学习时间每年硕士研究生入学数学考试的时间一般都安排在上午,故建议考生们将数学的复习时间安排在每天早上9:00~12:00(可根据自身情况适当调整,但此时效果最好)。每天至少应安排花2.5-3个小时来复习数学,其中基础阶段要用1.5-2个小时左右的时间理解掌握概念、定义等,用1个小时左右来做习题巩固。对于数学基础较差的同学建议每天再加1个小时的复习时间用来做习题并总结。备注:以上所提供的学习计划仅供参考。对于每天的学习时间,可以根据自身学习习惯自行调整,但是要求保持每两周和我们计划内容相同。2015考研数学:如何巧用大纲复习考研数学的学习是个慢功夫,要不断积累,考生在备考过程中,可以结合考研数学大纲来学习,这样可以让复习事半功倍。准确定位,吃透大纲结合本科教材和前一年的大纲,先吃透基本概念、基本方法和基本定理。数学是一门逻辑性极强的演绎科学,只有对基本概念深入理解,对基本定理和公式牢牢记住,才能找到解题的突破口和切入点。对近几年数学答卷的分析表明,考生失分的一个重要原因就是对基本概念、定理记不全、记不牢,理解不准确,基本解题方法掌握不好。尝试做题,理解概念在掌握了相关概念和理论之后,首先应该自己试着去解题,即使做不出来,对基本概念和理论的理解也会深入一步。因为数学毕竟是个理解加运用的科目,不练习就永远无法熟练掌握。解不出来,再看书上的解题思路和指导,再想想,如果还是想不出来,最后再看书上的详细解答。一道题怎么做出来不是最重要的东西,重要的是通过你自己的理解,能够在做题的过程中用到它。因此,在看完这本书上的那些精彩的例题之后,切莫忘记要好好在后面的习题中选两道来巩固一下。循序渐进,合理安排数学成绩是长期积累的结果,准备时间一定要充分。要对各个知识点做深入细致的分析,注意抓考点和重点题型,在一些大的得分点上可以适当地采取题海战术天考研辅导专家提醒考生,大家要适当拔高,综合应用。数学考试会出现一些应用到多个知识点的综合性试题和应用型试题。这类试题一般比较灵活,难度也要大一些。在数学首轮复习期间,可以不将它们作为强化重点,但也应逐步进行一些训练,积累解题思路,同时这也有利于对所学知识的消化吸收,彻底弄清楚有关知识的纵向与横向联系,转化为自己真正掌握的东西。数学虽然是个庞大的复习过程,需要花大力气,但是只要大家有坚强的毅力,掌握有效的学习方法,就会取得理想的成绩。考研数学备考应注意哪些方面?考研数学复习需要有一个全面的规划,也要掌握一些合适的方法,同时,还要避免一些没必要的失误。那么,考研数学备考应注意哪些方面?基础是提高的前提基础是提高的前提,打好基础的目的就是为了提高。考生要明白基础与提高的辩证关系,根据自身情况合理安排复习进度,处理好打基础和提高能力两者的关系。一般来说,基础与提高是交插和分段进行的,现阶段应该以基础为主,基础扎实了,再行提高。考生在这个过程中容易遇到这样的问题,就是感觉自已经过基础复习或一段时间的提高后几乎不再有所进步,甚至感到越学越退步,碰到这种情况,考生千万不要气馁,要坚信自己的能力,只要复习方法没有问题,就应该坚持下去。虽然表面上感到没有进步,但实际水平其实已经在不知不觉中提高了,因为有这样的想法说明考生已经认识到了自已的不足,正处于调整和进步中。这个时候需要的就是考生的意志力,只要坚持下去,就有成功的希望。不可忽视例题考生在备考时还要多做例题,而不仅仅是练习题。做例题时应遵照下面的方法,也就是在看第一遍之前一定要遮住答案,自己先认真做;无论做出与否都要把自己的思路详记于空白处,尤其是做不出的,一定把自己真实的思考方式记录在案,留待日后分析,而不是对了答案就万事大吉,这样做可以迅速的找到做题的感觉。总之,考生在做题目时,要养成良好的做题习惯,做一个"有心人",认真地将遇到的解答中好的或者陌生的解题思路以及自己的思考记录下来,平时翻看,久而久之,自己的解题能力就会有所提高。对于那些具有很强的典型性、灵活性、启发性和综合性的题,要特别注重解题思路和技巧的培养。数学试题千变万化,其知识结构却基本相同,题型也相对固定,往往存在明显的解题套路,熟练掌握后既能提高解题的针对性,又能提高解题速度和正确率。不要为做题而做题当然,一味的靠做题来提高数学能力也是不足取的。有这样一些考生,平时的解题能力很高,但最后的考试成绩却不是很理想,谈到自己失利的原因时,他说,自己平时几乎全部靠做题来提高水平,而对知识点缺乏更高层次上的把握和运用,导致遇到陌生的题目时,得分率严重下降。所以考生不能为做题而做题,要在做题时巩固基础,提高自己对知识点更高层次上的把握和运用。要善于归纳总结,对数学习题最好能形成自己熟悉的解题体系,也就是对各种题型都能找到相应的解题思路,从而在最后的实考中面对陌生的试题时能把握主动。考研数学的复习虽然艰难,但是只要有坚持到底的决心,有合适的方法,你就会发现复习越来越轻松,对自己也越来越有自信,最终的胜利也一定非你莫属!祝同学们复习顺利.考研数学三如何进行复习?刚开始复习基础的同学,春季,也就是现在就可以投入复习了。考研老师建议大家报数学春季基础班,可以初步树立自己的复习思路,为自己的复习起一个好头。一般来说复习分为四个阶段:第一个是基础复习阶段,这一阶段的任务是主攻教材和课本,达到基础知识的了解和掌握;第二个阶段是强化训练阶段,顾名思义这一阶段的主要任务是全书阶段,全面地掌握各类知识点,并且详细地做笔记,对常考的题型做大量的练习;第三个阶段是巩固提高阶段,这一阶段是通过真题和模拟题的训练和分析来完成将数学的整体框架结构搭建起来;最后一个阶段是冲刺阶段,这一阶段的时间一般较短,主要是做一些题目来达到稳定能力和水平的目的,并且再次地强化之前所记忆的知识点。考虑到数学三的特点,要求考生自己将所有的解题思路都琢磨出来是十分困难的,这方面通常可以通过求教有经验的老师,参加有较好信誉的考研辅导班,或者阅读有关的辅导书解决,推荐大家看《2015考研数学(一、二、三)历年真题权威详解》。另外在刚开始做题时,不必每道题都要写出完整的解题步骤,类似的题一般只要看出思路,熟悉其运算过程就可以,这样可以节省时间,提高做题的效率。考生在做题的同时还要注意各章节之间的内在联系,数三考试会出现一些应用到多个知识点的综合性试题和经济类型的应用型试题。这类试题一般比较灵活,难度不大。考生要注意对综合性的典型考题的分析,来提高自身解决综合性问题的能力。数学有其自身的规律,其表现的一个重要特征就是各知识点之间、各科目之间的联系非常密切,这种相互之间的联系给综合命题创造了条件,因而考生应进行综合性试题和应用题训练。通过这种训练,积累解题思路,同时将各个知识点有机的联系起来,将书本上的知识转化为自己的东西。考生在做题目时,要养成良好的做题习惯,做一个有心人,认真地将遇到的解答中好的或者陌生的解题思路以及自己的思考记录下来,平时翻看,久而久之,自己的解题能力就会有所提高。对于那些具有很强的典型性、灵活性、启发性和综合性的题,要特别注重解题思路和技巧的培养。数学试题千变万化,其知识结构却基本相同,题型也相对固定,往往存在明显的解题套路,熟练掌握后既能提高解题的针对性,又能提高解题速度和正确率。当然,一味的靠做题来提高数学能力也是不足取的。所以考生不能为做题而做题,要在做题时巩固基础,提高自己对知识点更高层次上的把握和运用。要善于归纳总结,对数学习题最好能形成自己熟悉的解题体系。也就是对各种题型都能找到相应的解题思路,从而在最后的实考中面对陌生的试题时能把握主动。才能将题解出来,进而拿到分数!2015考研数学:重基础和多做题考研数学作为公共学科里面最令人头痛的学科,让很多考生对他咬牙切齿,却依旧低下头来。考研数学综合性比较强、知识覆盖面广、难度颇大,很多考生复习起来没有思路。对于数学,小编建议考生,在学习基础和习题时对自己有更高的要求。基础知识知识点,需要从一定的深度去把握和理解,同时又能够从不同角度去理解、去掌握知识点之间的联系,熟悉常见的变通形式,能够透过现象抓住本质。知识是不断丰富和发展的,这就要求大家与时俱进,随着复习的深入,随着知识点与题目的结合,对知识点的认识和理解,都是要不断加深的。这就是为什么大家要不断地重复着回归课本,回归最基本的概念和方法。数学题实际上是基础知识的具体运用,就是知识的实践。因此大家就需要在解决题目的过程中,在时间的基础上,来反复加深对题目的理解,从而加深对整个数学知识体系的了解。习题演练对具体题目的解决,这就是大家考试的形式,也是检验大家知识水平和认识水平的一种方式。因此,一道题目的正确解决,首先需要你对这道题目所涉及的知识点的正确的、深刻的理解;同时,需要你能够采用正确高效的方法,将知识合理运用,进行正确的推理、计算,到最后正确地给出题目的解答。考研辅导专家认为,大家平时做题和考试时又有不同的侧重点,平时的题目演练,目的是为了大家自身的提高。而一道题目给大家的提高又是有两方面的:一方面是加深了大家对基础知识的认识,另一方面是加强大家分析和解决问题的能力。而真正考试的时候,那是作为一种检验,大家需要做的是不惜一切代价去展示自己,去在乎每一道题的正确与否,去对分数斤斤计较。因此,作为平时的做题练习,包括模拟考试,大家不去在乎会做与否,不必去为了一次模拟考试不如意而对自己产生怀疑甚至懊恼的情绪。考研数学历年来出的题目往往不是那些高难度的题型,大多是考查考生基础知识。所以考生只有脚踏实地,把基础知识掌握牢固才能赢得考研数学。2015考研数学:不可忽视的常考题型考研数学作为公共学科里面最令人头痛的学科,让很多考生对他咬牙切齿,却依旧低下头来。考研数学综合性比较强、知识覆盖面广、难度颇大,很多考生复习起来没有思路。对于考研数学,小编为考生总结了重点考查的题型,希望可以为大家提供一些帮助。题型一、求极限求极限是高等数学的基本要求,也是每年必考的内容。区别在于有时以4分小题形式出现,题目简单;有时以大题出现,需要使用的方法综合性强。比如大题可能需要用到等价无穷小代换、泰勒展开式、洛比达法则、分离因式、重要极限等几种方法,有时考生需要选择多种方法综合完成题目。另外,分段函数在个别点处的导数,函数图形的渐近线,以极限形式定义的函数的连续性、可导性的研究等也需要使用极限手段达到目的,须引起注意!题型二、利用中值定理证明等式或不等式,利用函数单调性证明不等式证明题基本上十年有九年都会涉及。等式的证明包括使用4个常见的微分中值定理(即罗尔中值定理、拉格朗日中值定理、柯西中值定理、泰勒中值定理),1个定积分中值定理;不等式的证明有时既可使用中值定理,也可使用函数单调性。这里泰勒中值定理的使用时的一个难点,但考查的概率不大。题型三、一元函数求导数,多元函数求偏导数求导数问题主要考查基本公式及运算能力,当然也包括对函数关系的处理能力。一元函数求导可能会以参数方程求导、变限积分求导或应用问题中涉及求导,甚或高阶导数;多元函数(主要为二元函数)的偏导数基本上每年都会考查,给出的函数可能是较为复杂的显函数,也可能是隐函数(包括方程组确定的隐函数)。另外,二元函数的极值与条件极值与实际问题联系极其紧密,是一个考查重点。极值的充分条件、必要条件均涉及二元函数的偏导数。题型四、级数问题常数项级数(特别是正项级数、交错级数)敛散性的判别,条件收敛与绝对收敛的本质含义均是考查的重点,但常常以小题形式出现。函数项级数(幂级数,对数一的考生来说还有傅里叶级数,但考查的频率不高)的收敛半径、收敛区间、收敛域、和函数等及函数在一点的幂级数展开在考试中常占有较高的分值。题型五、积分的计算积分的计算包括不定积分、定积分、反常积分的计算,以及二重积分的计算,对数一考生来说常主要是三重积分、曲线积分、曲面积分的计算。这是以考查运算能力与处理问题的技巧能力为主,以对公式的熟悉及空间想象能力的考查为辅的。需要注意在复习中对一些问题的灵活处理,例如定积分几何意义的使用,重心、形心公式的使用,对称性的使用等。题型六、微分方程解常微分方程方法固定,无论是一阶线性方程、可分离变量方程、齐次方程还是高阶常系数齐次与非齐次方程,只要记住常用形式,注意运算准确性,在考场上正确运算都没有问题。但这里需要注意:研究生考试对微分方程的考查常有一种反向方式,即平常给出方程求通解或特解,现在给出通解或特解求方程。这需要考生对方程与其通解、特解之间的关系熟练掌握。历年考研数学极限部分考点分布情况统计

考研数学中,极限是微积分的基础,基本概念和基本理论较多,许多考题重点考查基本概念和理论,题目出的都是基础题,这部分的题目分数不能丢,本章常考题型有:(1)直接计算函数的极限值或给定函数极限值求函数表示式中的参数;(2)无穷小量及其阶的比较;(3)讨论函数的连续性、求间断点及判断间断点类型;以上三种题型的核心是求极限,所以重点是求极限的方法。以下是历年考研数学真题中此两章题目的统计,从各题型的命题频率来看,考试的重点就一目了然了。2015考研数学备考如何避免复习误区2015考研的同学,已经开始了复习。但,常常有不少同学踏入复习的误区,偏离复习轨

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论