港工-第三章培训讲义_第1页
港工-第三章培训讲义_第2页
港工-第三章培训讲义_第3页
港工-第三章培训讲义_第4页
港工-第三章培训讲义_第5页
已阅读5页,还剩181页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第三章板桩码头第一节板桩码头的结构型式及其特点第二节板桩码头的构造第三节板桩码头的计算第一节板桩码头的结构型式及其特点一、板桩码头的特点

1.工作原理由沉入地基的板桩墙和锚碇系统共同作用来维持结构的稳定性。

2.优点结构简单,材料用量少,施工方便,速度快,可先打板桩后开挖港池,大量减少土方开挖。主要构件可预制。3.缺点 耐久性不如重力式,钢板桩易锈蚀(在施工水位以上需采用钢筋混凝土胸墙结构以防锈蚀);施工过程中一般不能承受较大的波浪作用,不适于在无掩护的海港中应用;需要打桩或其他沉桩设备。4.适用条件

所有板桩可沉入的地基。过去多用于中小码头,也可用于船闸闸墙、船坞 坞墙、护岸和围堰等。二、板桩码头的主要组成部分及其作用1.板桩墙由下部打入或沉入地基中的板桩所构成的连续墙,其作用是挡土并形成码头直立岸壁。板桩码头的最基本的组成部分。2.锚碇结构承受拉杆拉力。3.拉杆当码头较高时,墙后土压力较大,为了减小板桩的跨中弯矩(以减小板桩的厚度)和入土深度以及板桩墙顶端向水域方向的位移,应在适当位置设置拉杆,以传递水平荷载给锚碇结构。4.导梁连接板桩荷拉杆的构件,拉杆穿过板桩固定在导梁上,使每根板桩均受到拉杆作用。5.帽梁帽梁作用相当于前面的胸墙,一般是现浇的。当水位差不大时,可将帽梁和导梁合二为一,成为胸墙。6.倒滤层为防止墙后填土从排水7.码头设备便于船舶系靠和装卸作业。

某板桩码头断面图三、板桩码头的施工顺序

先打板桩后开挖港池:以减少挖填方量;先开挖港池后打板桩:只有在泥面较高,施工水深不够以及土壤较松软时,才先开挖,后打板桩。四、板桩码头的结构型式1、按板桩材料分

⑴木板桩码头:强度低,耐久性差,木材用量大,现在很少使用。

⑵钢筋砼板桩码头:耐久性好,用钢量少,造价低,但强度有限,一般用于中小型码头。

⑶钢板桩码头:强度高,重量轻,止水性好,施工方便,但易腐蚀,耐久性较差,适用于建造水深较大的海港码头,特别多用于要求不透水的船坞坞墙、施工围堰和防渗围幕等工程中。2、按锚碇系统分⑴无锚板桩结构简单,只有板桩墙和帽梁两部分。板桩呈悬臂工作状态,承载能力小,墙顶变形大,在码头中一般不用。

⑵有锚板桩当墙高较大时,为了减小板桩的断面尺寸和桩顶位移,而设置拉杆和斜拉桩锚碇。

①单锚板桩②双锚板桩

③多锚板桩④斜拉板桩单锚板桩:适用于墙高在6~10m以下的中小型码头。

双锚或多锚:适用于墙高大于10m的码头,但应用较少。原因:下拉杆高程较低,施工困难(一般要求水上穿拉杆);上下拉杆的位移很难协调,常会使某一拉杆严重超载。

斜拉桩:不设水平拉杆,而增设斜拉桩来锚碇,使锚碇结构至板桩墙的距离大大缩短,减少了墙后开挖,特别适用于墙后不能开挖或开挖不经济的情况。但是斜拉桩承受水平力的能力有限,因此多用于中小型码头。3、按板桩墙结构分类

⑴普通板桩墙由断面和长度均相同的板桩组成,其优点是板桩类型单一,施工方便。⑵长短板桩结合在普通板桩墙中,每隔一定距离,打入一根长板桩,这样既保证了稳定,又降低了造价。适用于土质条件较差,在较深处才有硬土层的情况。⑶主桩、板桩结合将长桩的断面加大,成为主桩,以充分发挥长桩的作用,而将短桩的断面减小,成为辅桩,从而构成主桩板桩结合。适用同上。⑷主桩挡板(套板)结合与3不同的是,它是在主桩后面放置挡板或在主桩之间插放套板来挡土。墙后土压力直接作用在挡板(套板)上,最后全部传给主桩,主桩受力很打,因此适用于水深不大的情况,且要求先开挖港池,以便挡板(套板)的安放。4、按施工方法分

⑴预制沉入板桩

⑵地下墙

①水下砼连续墙:用钻机在地下开沟槽,用水下浇注砼方法形成连续墙;

②预制板桩成槽沉放:将预制的钢筋砼板桩放在沟槽内,板桩前后用低标号的水泥土浆填满。一、板桩:板桩码头的主体㈠、钢筋砼板桩

1、型式、特点及尺寸

⑴型式

①矩形

②T形

③组合形

④圆形第二节板桩码头的构造⑵尺寸

①矩形

A、特点形状简单,制作方便,沉桩容易,接缝容易处理。但抗弯能力差,费材料。

B、尺寸其厚度应根据强度和抗裂要求由计算确定,一般外20~50cm,宽度由打桩设备的龙口宽度决定,一般为50~80cm。

②T形A、组成由翼板和肋组成,翼板起挡土作用,肋起桩的作用。B、特点板桩数量少,施工速度快,抗弯能力强;但T形板桩导向能力差,易偏位,通常采用水冲沉桩或振动沉桩设备,企口不严,须设置防漏措施。由于翼板只起挡土作用,其底部只须低于设计水底以下1~1.5m,且不小于冲刷深度。C、尺寸宽度:取决于施工设备的能力,如吊重、龙口宽度等,一般1.2~1.6m;厚度:取决于强度和抗裂验算;桩长:取决于“踢脚”稳定性和岸壁整体滑动稳定性。③圆形工程中一般采用的型式有两种,现场浇注排桩和预制管柱桩,前者同地下墙预制管柱桩:直径为50~300cm的预应力管柱桩,厚度为10~50cm,节长在10m内,在现场用法兰盘连接成需要的长度。特点:省材料,抗弯能力强,可适应多种地质条件下施工,可打桩,可射水沉桩或振动沉桩,但需专门的预制场和专门的预制设备(离心机)。

④组合型实际上是主桩板桩结合,适用于地质条件较差处,但构件类型多,施工麻烦,主桩受力较大,板桩受力小,受力不均匀。2、板桩的立面和接缝

①矩形

特点:一侧阴榫拉通,另一侧从桩顶到设计水底以下1m以上做成阴榫(不得低于设计冲刷水位),1m以下做成阳榫;设计水底以上断面形成空腔,内填细石砼;顶面30~50cm范围内,两侧各缩进2~4cm,以便桩设替打;底部一侧做成斜面,使得后一板桩打入时,紧贴前一板桩,接缝严密。

②T形板桩导向能力差,企口常不密实,要处理。企口处:设置倒滤层;在翼板两侧设置锁口,并焊接,既可导向,又可有效防止漏土。

3、板桩的配筋钢筋砼板桩:普通钢筋砼板桩≮25#,预应力钢筋砼板桩≮35#,设计中应尽可能采用预应力,以增加抗裂性和耐久性。受力筋:数量由计算确定,直径≮12mm,一般采用通长双面对称配筋;桩顶:为防止桩头被打碎,至少配置3~4层钢筋网;箍筋:桩顶(尖)1m范围内要加密,@10cm,中间可采用@25~30cm。

㈡、钢板桩

1、钢板桩的断面形式常用断面形式有U形、Z形、圆管形、H形和组合形钢板桩,桩的截面模量较大,多适用于较大的深水码头。⑴U形

U形钢板桩相互倒置形成“折瓦”形断面的连续墙,其中和轴位于“折瓦”形断面的中间,即锁口位置。由材料力学可知,受弯矩作用时,中和轴处的剪应力最大,如锁口咬合不牢,受力后易错位,断面系数降低,设计时,通常要根据实际情况,对其断面系数进行折减。⑵Z形抗弯能力好,受弯时,连接锁口处,剪应力为零,由于单根Z形钢板桩断面不对称,施工时易扭转,故施工时一般采用将两根板桩焊在一起施打。⑶平板形抗弯能力差,但“锁骨”形锁口,横向受拉能力强,适用于格型结构中。

2、钢板桩的锈蚀合防护①改进钢材的化学成分,采用防腐蚀的钢种;

②物理保护,涂防锈油漆;

③化学保护,阴极保护,效果较好,但费用较高;

④增加板桩的厚度;

⑤尽量降低帽梁或胸墙的底标高,以减少锈蚀面积。二、锚碇结构

锚碇板(墙)锚碇桩(板桩)锚碇叉桩(斜拉桩)㈠、锚碇板(墙)1、受力原理依靠其前面回填料的土抗力来承受拉杆拉力,承载能力较小,水平位移较大。2、型式

⑴锚碇板:平板、T型、双向梯形

⑵锚碇墙:现浇钢筋砼连续墙,预制钢筋砼板,现场安装。3、尺寸

⑴高度:由稳定计算确定,一般不宜小于埋置深度的1/3,长采用1.0~3.5m;

⑵厚度:由强度计算确定,≮15cm,常采用20~40cm;

⑶预留拉杆孔位置:作用在锚碇板(墙)上的土压力合力作用点重合。4、回填及构造

⑴土质锚碇板(墙)施工不需打桩设备,但必须开挖基坑和基槽,增加了开挖工程量并破坏了土的原状结构,为了充分利用墙前土抗力,墙后一般须换填力学性质好的填料(如北方的灰土夯实,南方的块石回填)

⑵构造采用预制安装的锚碇板(墙),下面常用15~20cm厚的碎石铺垫。现浇锚碇墙,下面应浇注10~15cm的贫质砼垫层。5、适用条件码头后方场地宽敞,拉杆力不大时。㈡、锚碇桩(板桩)

1、受力原理靠桩打入土中嵌固工作,其深度由“踢脚”稳定来确定,此结构属于无锚桩,承载能力较小,水平位移较大;2、组成一般2~3根组成一组(用导梁连接),也可单独锚碇;3、材料可采用钢筋砼或钢桩或钢板桩;4、适用条件码头后方场地宽敞,且地下水位较高或利用原土层时;㈢、锚碇叉桩和斜拉桩

1、受力原理靠桩的轴向拉压和拉拔承载力来工作,其稳定性由桩的承载能力确定。2、构造斜度≤3:1,宜采用3:1~4:1;桩顶净距30~40cm;现浇桩帽,将拉杆与桩连成整体。3、斜拉桩无拉杆,以斜桩取代,桩顶应尽量靠近板桩,以减少桩顶弯矩,从而简化成铰进行计算。4、适用码头后方场地狭窄,拉杆力较大时。㈣、其它形式拖板式、尼龙带式、锚杆式,加筋土结构及混合式。三、拉杆

1、位置从减小板桩墙的跨中弯矩来看,拉杆宜放在标高较低处,但为了保证水上穿拉杆和导梁胸墙的施工条件,一般在平均水位以下,设计低水位以上0.5~1.0m,且不得低于导梁或胸墙的施工水位。2、尺度与材料

⑴直径:由强度计算确定,一般40~80mm;

⑵间距:对钢筋砼板桩墙,取板桩宽度的整数倍,对单设导梁的U形和Z形钢板桩,应取板桩宽度的偶数倍;

⑶长度:取决于板桩墙与锚碇结构的最佳距离,由计算确定,当拉杆较长(>10m),中间应用紧张器加以拉紧;

⑷材料:采用焊接质量有保证,延伸率不小于18%的高强钢材。3、拉杆失事及防治措施

⑴失事原因

①设计拉力>实际拉力

②拉杆下填沉陷,拉杆在其上土重及地面荷载作用下发生弯曲,产生附加应力而断裂。

③锈蚀使拉杆断面减小。因此,设计时,应考虑各种影响因素,正确计算拉杆拉力,并采取措施,减小或消除各种附加应力,并防止拉杆锈蚀。⑵防治措施

①夯实拉杆下的填土,或在拉杆下设置支撑,以减小沉陷,支撑形式有支撑桩、设砼垫块或垫墩、铺碎石或灰土垫层。

②在拉杆两端设置连接铰,以消除其附加应力。

③在拉杆上做各U形防护罩,使拉杆上面的土重及地面荷载不直接作用载拉杆上,而通过防护罩传到拉杆两侧的地基上。

④防锈处理,涂两层防锈漆,并用沥青麻袋包裹两层。

⑤回填料严禁带有腐蚀性。四、导梁、帽梁及胸墙1、施工方法导梁可预制,也可现浇,帽梁一般现浇。2、胸墙型式有矩形、梯形、L形及工字形。当码头水位差不大,拉杆距码头面距离较小时,一般将导梁和帽梁合二为一成胸墙。3、系船块体设置一般与胸墙整体现浇,也可单独设置。4、变形缝导梁、帽梁、胸墙沿码头长度方向应设置变形缝,间距15~30m,并设置在结构型式和水深变化处,地基土质差别较大处及新旧结构的衔接处,缝宽2~3cm。5、钢板桩码头导梁设置在钢板桩码头中,导梁一般由两根槽钢组成,并为防止船舶撞击和减小锈蚀,而放在板桩墙的里侧。五、排水设施

为了减小和消除作用在板桩墙上的剩余水压力,板桩墙应在设计低水位以下设置排水孔,孔径5~8cm,孔距3~5m,孔后设置抛石棱体,以防止填土流失。第三节板桩码头的计算

一、作用及作用效应组合

㈠、板桩码头上的作用

⑴永久作用:土体产生的主动土压力,剩余水压力;

⑵可变作用:地面可变荷载产生的土压力、船舶荷载、施工荷载、波浪力;

⑶偶然作用:地震荷载。计算一板桩墙的计算1、土压力

板桩墙在外力作用下,墙体将发生弯曲变形;因此,沿墙高各点的水平位移不同。板桩墙上各点的土压力不仅与该点以上的土重、地面可变作用以及土的物理力学性质有关,而且与该点墙体的水平位移密切相关,所以,要准确确定板桩墙的土压力很难。

⑴主动土压力

①特点:呈R形分布呈现R形分布的原因:关键是沿墙高位移不同。因为板桩上部有拉杆拉住,下端嵌固于地基中,上下两端位移较小,跨中位移较大,墙后土体在板桩变形过程中呈现拱现象,使跨中一部分土压力通过滑动土条间的摩擦力传向上、下两端。从而是墙后主动土压力产生上下大,中间小的R形状。影响板桩墙墙各点位移不同而造成墙后后主动土压力呈R形分布的主要因素有:板桩墙的刚度:刚度越小,R形越显著;锚碇点位移:越小,R形越显著;施工顺序:先打板桩,后开挖比反之更显著。

②计算方法(土压力经验系数修正法)主动土压力仍按采用刚性墙确定的土压力理论进行计算,即:仍按线性分布计算,但考虑到板桩墙体变形对土压力的影响,将以此土压力及其它荷载计算得到的板桩墙的跨中Mmax和RA,应分别乘以合适的经验修正系数。计算中,可取δ=(1/3~1/2)φ。当地面为水平,墙背为垂直面时,由土体本身产生的主动土压水平强度标准值和由码头地面均布荷载产生的主动土压力水平强度标准值可按下式计算.

⑵被动土压力板桩墙下端扎入地基中,当墙体受侧向力作用后,墙前入土段将产生被动土压力。当入土深度不大时,入土段墙体只出现向前的移,墙前被动土压力与刚性墙的相似。在板桩墙入土深度较大时,板桩嵌固于地基中,其下端还产生向后翘;因此。入土段的上部墙产生墙前被动土压力,其下部产生墙后的被动土压力。

①特点:墙前被动土压力比理论计算值大1倍左右,而墙后(下端)被动土压力比计算值小一半左右。

②墙前被动土压力增大的原因

A、板桩在水底处发生向下转动变形,使墙前土体受到向下的挤压摩擦力。

B、板桩向前变形,压挤墙前土体,使土的密实度增大,抗剪强度提高。

C、入土段上部墙体对土体产生向下的摩擦力,使土体的稳定性增大。

③墙后被动土压力减小的原因

A、板桩底部被地基嵌固,使板桩下端变形较小,达不到极限被动土压力所需的位移值;

B、板桩底端发生向上转动变形,给墙后土体一个向上的“掘出力”;

C、板桩下端与土体产生向上的摩擦力,使土体的稳定性减小。

④计算方法同前,但计算墙前被动土压力时,δ=(2/3~3/4)φ,当δ>20°,则取20°。计算墙后被动土压力时,δ=-2/3φ,当δ<-20°时,则取-20°。当计算水底面为水平、墙面为垂面时,由土体本身产生的主动土压力水平强度标准值:2、剩余水压力

剩余水压力取决于水位涨落情况、板桩墙排水好坏、回填土及地基土的透水性等。

⑴海港钢筋砼板桩码头,当板桩墙设有排水孔,墙后回填粗于细砂颗粒的材料可不考虑。

⑵对海港钢板桩码头,地下墙式板桩码头及墙后回填细砂的钢筋砼板桩码头,△=1/3~1/2平均潮差。对河港则根据地下水位按实际情况取定。备注:计算土压力时,土和填料的重度按以下规定采用:

⑴粘性土:剩余水位以下取浮重度;剩余水位与设计高水位之间取饱和重度,设计高水位以上取天然重度;

⑵无粘性土:剩余水位以下取浮重度;剩余水位以上取天然重度;3、其它荷载⑴船舶荷载:只考虑系缆力,不考虑撞击力和挤靠力,但要加以区分:

①系船块体单独锚碇,板桩不考虑系缆力;

②系船块体和胸墙或帽梁一起现浇,且不单独锚碇,板桩应考虑系缆力。

⑵码头地面荷载:以土压力的形式作用于板桩墙上。

⑶波浪力:只计波吸力,且不能与船舶荷载同时出现。

⑷地震荷载:地震地区4、挖泥时超深的考虑超深的结果:是板桩墙的入土深度减小和墙体的计算跨度增大,从而降低了板桩墙的稳定性,增大墙体的跨中弯矩和拉杆拉力。计算板桩墙时,还须考虑港池挖泥时可能出现的超深(0.5m)和冲刷水深。㈡、作用效应组合

设计板桩码头时,必须考虑持久状况、短暂状况和偶然状况,并按不同的极限状态和效应组合进行计算。

1、按承载能力极限状况设计的项目

①板桩墙“踢脚”稳定性;

②锚碇结构的稳定性;

③板桩码头的整体稳定性;

④桩的承载力;

⑤构件强度等

板桩码头按承载能力极限状态设计时,所取水位和作用效应组合应按《规范》的规定选用持久组合、短暂组合和偶然组合,一个组合应考虑多种水位情况。如:持久状况持久组合:应按设计高水位、设计低水位、极端低水位;短暂状况短暂组合:应按设计高、低水位或施工水位分别计算;偶然状况偶然组合:应按设计高、低水位分别计算,参见《抗震规范》;设计时可针对某一计算内容,选取某一最不利水位进行计算(应作正确判断),如:板桩墙的强度及稳定性和拉杆力一般由设计低水位控制。2、按正常使用极限状态设计钢筋砼构件的裂缝宽度和抗裂验算。二、无锚板桩墙的计算

在P作用下,作用在无锚板桩墙各点的实际土压力为两侧之差(被动土压力与主动土压力之差),即:

为便于计算,德国逻美尔建议作下列简化:首先,近似地用直线AB′DC代替曲线图形ABDC;然后作水平线mm′和nn′,分别使ΔB′mo1替代ΔMo1D;以Δn′o2C替代ΔDNo2;接着在板桩墙两侧各加一个面积相等的梯形MmnN和Mm′n′N(如上图b);最后的土压力图形变成上图c的形状。右侧土压力的图形为MFCm′,其高度为b,由于b一般不大,可近似取b/2处为此梯形面积的中心,以集中力代替MFCm′面积的土压力。这样就将板桩墙的受力情况简化为一个简支梁的计算图式。已知P,根据力的平衡条件,即可用数解法(均质地基)或图解法(适用于分层的非均质地基土)求得未知数T0和。求得T0和后,可按材料力学的方法计算墙体个断面的弯矩和剪力。板桩墙的设计入土深度tmin(m)可按下式确定:三、单锚板桩墙的计算

㈠、单锚板桩墙的工作状态

1、第一种情况板桩的入土深度最小,在水平力作用下,板桩绕上端支撑点转动,板桩中只有一个方向的弯矩,且数值最大,板桩入土段发生较大位移,所需板桩长度最短,但断面最大,按底端自由计算。这种情况即为自由支撑法,算得的入土深度往往需要加长,实际也就接近第三种情况。(本法为日本及一些西方国家所采用)

2、第二种情况入土深度和受力情况介于第1、3之间,入土段比第1种稍深,受力后,底端只有转角,没有位移。也属于自由支承状态。3、第三种情况入土深度较深,入土部分出现与跨中相反方向的弯矩,板桩墙弹性嵌固于地基中。这种状态,所需板桩断面最小,入土部分位移小,稳定性好,为我国所采用(弹性线法)。4、第四种情况类似第3种状态,但入土深度更大,固端弯矩大于跨中弯矩,数值并不比第3种状态小,稳定性有富裕,但对减少墙体跨中弯矩非常有限,一般无必要。㈡、计算内容及计算工作状态

1、板桩墙计算内容板桩墙的入土深度,板桩墙弯矩,拉杆拉力。

2、计算工作状态一般采用板桩墙底端为弹性嵌固的工作状态,即第三种。当有下列几种情况时,也可采用自由支承状态,或介于两者之间的工作状态,即:

⑴板桩墙底端在地基中达不到弹性嵌固的工作状态;

⑵板桩千采用钢板桩时,其材料强度有较多富裕;

⑶板桩墙的刚度很大;

⑷地基土质比较好。㈢、计算方法

⑴弹性线法:仅适用于单锚板桩墙的弹性嵌固工作状态;但对于刚度较大的板桩墙(如现浇地下墙),不宜采用弹性线法。

⑵自由支撑法:仅适用于单锚板桩墙的自由工作状态;

⑶竖向弹性地基梁法:可适用于单锚和多锚板桩墙的任何工作状态。㈣、单锚板桩墙的计算

⑴基本思想板桩墙下端自由支撑在其前面的地基土体上,这部分土体处于极限状态,完全出现极限被动土压力。

⑵计算图式静定梁,两个未知数,入土深度tmin和Ra;

⑶平衡条件

∑H=0

∑M=01、自由支撑法

2、罗迈尔法(弹性线法一种)

⑴基本思想假定板桩墙入土段弹性嵌固于地基中;入土段前面的土抗力按古典土压力理论(教材公式)计算,底端后面的土抗力用集中力Ep’代替。

⑵工作状态由于板桩墙入土段在地基中弹性嵌固,入土段产生负弯矩M­2,有利于减小跨中正弯矩M1,且|M2max|略小于|M1max|,一般|M1max|=1.1~1.15|M2max|;土压力零点与弯矩零点约相吻合;变形协调条件:板桩底,MB=0,δB=0,φB=0,锚固点δA=0。⑶计算图式和计算方法

①计算图式:一次超静定结构,三个未知数,t0,Ra,Ep′;

②计算方法:图解试算法;

③计算条件:求解时,先假定入土深度,除了需利用平衡条件H=0,∑M=0外,还需利用变形协调条件,用试作板桩墙变形曲线的方法求解,故称为弹性线法。计算时,要不断改变入土深度,反复试算,直到满足变形条件为为止。其变形条件是板桩墙底端的角变位和线变位为零,即入土段底端的弹性变形曲线与铅垂线相切;同时,锚碇点的位移也等于零。由于作弹性曲线较麻烦,为了简化计算,采用:

|M1max|=1.1~1.15|M2max|条件取代变形条件。

具体可按计算`步骤如下:

A、假定t0;

B、用古典理论计算主、被动土压力;

C、用图解法(作力矢图和索多边形的方法),以

|M1max|=1.1~1.15|M2max|

为控制条件,若不满足该条件,则须重新假定t0;

D、计算结果应考虑土压力重分布的影响(R形)对跨中弯矩须折减:对拉杆力须增大:E、入土深度确定:备注:

e′为t0处墙后被动土压力强度ep′-t0处墙前主动土压力强度ea′。

F、按“踢脚”稳定性验算入土深度,若不满足应取满足“踢脚”稳定的入土深度,P61公式。备注:对刚度较大的板桩墙(如现浇地下连续墙),本方法计算结果往往偏于危险,故不宜采用(P61中),另外,本方法较适合施工单位在缺乏资料的情况下使用。弹性线法的单锚板桩墙算例3、竖向弹性地基梁法(m法)

⑴板桩码头的稳定性破坏状态

①锚碇失稳:由于拉杆断裂或锚碇结构系统破坏而造成;

②板桩墙失稳:由于入土深度不够,而使板桩墙绕拉杆锚碇点发生转动而破坏,即“踢脚”稳定破坏;

③整体稳定性破坏:由于板桩墙入土深度不够或拉杆长度不够,而使板桩墙和后方土体一起产生稳定性破坏。显然,用1、3来确定板桩墙得入土深度,理由不合理也不充分。⑵板桩墙的入土深度

《规范》规定,板桩墙得入土深度应满足“踢脚”稳定得要求,即:

式中:

γ0为结构重要性系数;

γd为结构系数;

MR为墙前被动土压力标准值对拉杆锚碇点得稳定力矩;⑶板桩墙的内力计算(m法)①基本假定

A、假定土为弹性介质,地基系数随深度成正比,C=mZ;

B、不考虑桩土之间的粘聚力、摩擦力;

C、桩按实际刚度、并作为一个弹性构件考虑;土体的应力、应变要符合文克尔假定,即地基表面任一点的压力强度于该点的沉陷成正比,σ=k0y=Cy。

②符号规定水平位移x以向右为正;转角φ以反时针为正;弯矩以左侧纤维受拉为正;剪力以绕它端顺时针为正

③地基梁的挠曲方程及弯矩、剪力和荷载的微分关系地基梁的挠曲微分方程:

①②③④将①整理:令(桩土变形系数)得:利用边界条件确定系数:当z=0时,

先求利用边界条件可求得:,要得到边界条件,须先判断支撑情况,根据规范规定:

A、对于支撑在非岩石类土或直接放在基岩上的桩(不嵌岩,墙后地面无填土)非岩石地基:,为弹性桩(若≤2.5,则假设基础的刚度为无限大,按刚性基础计算)支撑在岩基上:,为柱承桩。当

求得:

求得:B、当地面以上有填土,且有均布荷载时

⑷板桩墙内力及拉杆拉力计算

作用:主动土压力,剩余水压力,拉杆拉力Rk,地面以下得超载。计算时,将板桩墙从计算水底处切开。计算水底以上段为底端固定得悬臂梁(单宽),其上作用有:墙后土压力,剩余水压力,各支承点得反力R1、…Rk,以及桩顶端力矩M1。计算水底以下段为竖向弹性地基梁(单宽),其上作用有:超载土压力、剩余水压力(总强度为)和端部得水平力Q及力矩M。

根据悬臂梁得计算可得式中:Q0,M0分别为作用载上段墙上得水平力合力和它们对切开处的力矩;hi为支承点到切开处的距离。

①建立各支点i的变形协调方程式

a、在i点处由于X0,φ0产生的水平位移和1点的转角

b、由于各支点反力Rk和M1在i点上产生的水平位移和1点的转角:c、土压力和剩余水压力在i点产生的水平位移和1点转角

d、给定锚碇点的水平位移和1点转角

建立各支承点i的变形方程:

②计算设计弯矩和拉杆拉力入土段:自由段:设计弯矩:设计拉力:注意:当考虑拉杆锚碇点位移时,计算弯矩不折减。③m法优点

a、入土深度的确定,m法比弹性线法好,特别时在土质较差时,m法更接近,建议在软土地基上的板桩工程不能用弹性线法确定入土深度。b、反映了刚度的影响(EI);c、可考虑锚碇点的位移,符合实际情况;d、m法计算结果与原型试验值较吻合;e、m法适用性强。⑸板桩墙的强度计算①对钢筋砼板桩和预应力钢筋砼板桩,应根据强度进行配筋,并进行裂缝宽度或抗裂验算。

②对于钢板桩,其单宽强度应满足下式:式中:

N——作用标准值产生的每米轴向力(KN);

Mn——作用标准值产生的每米板桩墙最大弯矩(KN·m)

A——钢板桩截面积(m2/m)

ft——钢材的强度设计值(N/mm2)

γGQ——综合分项系数,1.35。

Wz——钢板桩的弹性抵抗矩(m3/m)计算二锚碇结构的计算

一、锚碇板(墙)的稳定计算

锚碇板的主要作用:拉杆拉力RA,板后主动土压力Eax,板前被动土压力Epx。规范规定,锚碇板(墙)在这些荷载作用下,其稳定性应满足:

式中:γ0——结构重要性系数;γd——结构系数;

Eax,Eqx——墙后土体和地面可变作用产生的主动土压力水平分力标准值;

RAx——拉杆拉力水平分力标准值;

Epx——被动土压力水平分力标准值。备注:1、主动土压力Eqx,Eax:

①荷载布置从板(墙)后开始,使Eqx最大;

②计算Eax,Eqx时,取δ=0。2、拉杆拉力RA:计算中不考虑拉杆与填土的摩擦力。3、被动土压力Epx

锚碇板(墙)前被动土压力可按下式计算4、kb可根据规范P20公式3.4.3-1,3.4.3-2计算;5、对锚碇板(墙)的稳定性,需验算设计高、低水位两种情况。二、锚碇板(墙)到板桩距离的确定最佳距离:注意:1、H0(板桩墙后主动破裂棱体得高度)的确定

①采用弹性线法时,取最大负弯矩点到码头地面的距离;

②、采用m法时,取地基梁第一变形零点到地面的距离;采用自由支承法时,取最小入土深度tmin处到地面的距离。2、对于多层土情况,可将取加权平均值。3、对由于某种原因(如施工场地紧缺,墙后有不能拆除的建筑)不能满足上式时,在计算锚碇板(墙)稳定性时,应从Epx中扣除△Epx。式中:

td——交点d到地面的距离;

la——拉杆间距;

kp——被动土压力系数。4、最断距离:即:锚碇板(墙)前面的土体的被动破裂面不能穿过板桩墙。三、锚碇板(墙)的水平位移

式中:

Ra——每米宽板桩墙的拉杆拉力标准值(KN/m);

ha——锚碇板(墙)的高度(m);

bk——锚碇板(墙)的计算宽度(m);

kH——锚碇板(墙)的水平拉力系数(KN/m3),板(墙)前采用块石填料时,kH=3700KN/m3。四、锚碇板(墙)的内力计算

1、现浇连续钢筋砼锚碇墙

①水平方向为刚性支承连续梁,其拉杆拉力标准值产生的水平向最大弯矩:式中:

Ra——每米宽板桩墙的拉杆拉力标准值(KN/m)。

②竖向为悬臂梁,土抗力沿墙高为均匀分布,即Ra/ha。拉杆拉力标准值产生的竖向单宽最大弯矩为:2、设有连续导梁的分块预制的锚碇墙(预制安装)导梁的最大弯矩和预制板的竖向单宽最大弯矩按上式计算。3、双向悬臂的锚碇板由拉杆拉力标准值产生的水平向和竖向最大弯矩分别为:

b为锚碇板宽度。五、锚碇桩(板桩)

1、其长度和内力可按受集中水平力RAX(对于锚碇板桩为Ra)作用的无锚板桩墙的计算方法计算。

2、锚碇桩(板桩)到板桩墙的最小距离应满足式(3-3-10)的要求,式中th为锚碇桩(板桩)变形第一零点到码头地面的距离。

3、拉杆处的水平位移,可按竖向弹性地基梁法计算,但≯50mm。六、锚碇叉桩

1、计算时,考虑两端为铰接,不考虑周围土体对桩的作用:式中:W——作用在叉桩桩帽上的垂直力标准值2、锚碇叉桩锚碇点的水平位移计算(见规范)3、叉桩设置原则

①叉桩必须位于板桩墙墙后土体主动破裂面以外;

②压桩桩尖距板桩墙的距离不得小于1.0米。七、拉杆1、拉杆拉力的标准值:2、拉杆断面设计:式中:

γRA——拉杆力分项系数,1.35。

ft——钢材的强度设计值(N/mm2)八、帽梁、导梁及胸墙结构的计算

1、帽梁主要作用:各板桩不均匀沉降产生的变形应力和船舶荷载,设计时:

①当系船块体单独锚碇,帽梁不受系缆力影响时,一般只需按构造要求进行配筋;

②当系船块体与帽梁整体现浇,且不单独锚碇,帽梁受系缆力的影响时,需按强度配筋,并验算裂缝宽度。计算图式:按文克尔假定的弹性地基梁进行计算。即将帽梁视为弹性地基上的梁,弹性地基为板桩墙拉杆以上的悬臂段。根据地基系数的概念(一个单位面积移动一个单位位移所需的力),k可按悬臂梁计算而得:2、导梁近似按刚性支承连续梁计算,荷载q=Ra

导梁和导梁悬臂段产生的最大弯矩为:钢筋砼导梁应按强度配筋,并验算裂缝宽度,钢导梁的强度应满足:3、胸墙设计竖向按悬臂梁计算,取拉杆处为固端。

①系缆力作用时;

②撞击力作用时水平方向:按刚性支承连续梁计算

①对工字型断面,取下翼板为导梁;

②对L型断面,取平台板为导梁;对矩形或梯形截面,取拉杆附近的0.5~0.7米高度部分为导梁。九、整体稳定性验算

1、板桩码头整体稳定性验算可采用圆弧滑动法;

2、计算只考虑滑动面通过板桩桩尖的情况,如桩尖以上或以下附近有软土层时,尚应验算滑动面通过软土层的情况。

3、当圆弧从桩尖以上通过时,计算时不计截桩力,当滑动面从锚碇结构前通过时,计算时不计拉杆力对稳定性的影响。板桩码头施工一、桩木板桩重量轻,强度低,小型码头。①钢筋砼板桩重量大,强度较高,耐久性好,造价高,大中型码头。②钢板桩

重量轻,强度高,可打入强风化岩,耐久性差,造价高,大中型码头。连续板桩用于板桩墙分岔处和不同型式板桩相连接处角形板桩用于凸出的转角处二、板桩墙施工

钢筋砼板桩只有直轴线体系为了控制墙的轴线位置,保证桩的垂直度,减小桩的平面扭曲和提高打桩效率,须设置导向梁或导向架,分别用于陆上和水上施打板桩墙。①成排打以20根桩左右为一批,先打两端的1~2根桩,一直打到设计标高,后打中间其余的板桩,一次或若干次按顺序打至设计标高。优点:桩沿墙轴线不易倾斜,榫口、锁口不易脱开、拉坏,几乎可不用楔形桩,桩不易扭面,墙表面不易错牙。缺点:为插立桩须用高的打桩架,插立后的桩呈壁状,易受风、浪影响,施工复杂。施打方式:②单独打(优缺点与成排式相反)混凝土桩一次打一根,板型钢板桩、槽型钢板桩可一次打1~3根,Z型钢板桩因非对称,为防止桩扭转,宜一次打两根(须拼装)。替打可用铸钢或钢板焊成,其内外壁外伸长度以10~20cm为宜,间隙量为板桩壁厚的2倍。打桩方法一般用锤击法,如遇砂土地基,需用震动法。为提高打桩效率和避免打坏桩头,宜采用大锤“重锤轻打”。当钢板桩的阴榫朝着打桩前进方向时,为防止泥进入阴榫内,宜在阴榫口的下端堵以木塞。在打桩的过程中,板桩或多或少会沿墙轴线方向向前倾斜,倾斜较小时,可边打、边用卷扬机反向施以拉力;倾斜较大且达到桩长的1%时,应打入楔形桩补救。钢筋砼楔形板桩可事先预制,楔形钢板桩可根据实际情况现场截割、拼焊而成。在施打钢板桩时,如因锁口阻力过大,为防止后续打的板桩带动已打板桩下沉,可事先在锁口内涂润滑油降低阻力,或采用焊锁口的办法将若干根已打桩连成一整体,以增加其抗下沉的能力。钢筋混凝土板桩宜长勿短,宁截勿接。如土质较硬,为避免打坏桩顶,钢板桩顶须焊钢板,作适当加强。三、适当的施工顺序1、码头前沿线在水域中时:(用打桩船打桩)①水深较大,能满足打桩船吃水时,应先施工码头主体,后挖泥(指墙前挖泥)。水深小,分两次挖泥,第一次要满足打桩船吃水要求,主体施工后再挖泥。②打桩后,及时进行锚碇系统和墙后填土的施工。避免已打板桩因后续打桩震动和土坡蠕动的共同作用产生过大的前倾。③根据锚碇系统的形式妥善安排板桩墙、锚碇系统和墙后填土这三个工序的施工。2、码头前沿线在陆域中①先施工码头主体、后挖泥。②若挖泥厚度较大,宜分两次挖泥,且两次间有适当间歇,使板桩墙前倾缓慢发展,减少前倾量。注意事项:码头主体完工后的挖泥应沿纵向均匀地进行,且要防止碰坏墙壁和超深。如超深大于设计要求,应用适宜的材料(如砂)进行填补,以免降低墙前的被动土压力。帽梁(不与导梁合一时)的施工,应在墙前挖泥后,墙顶位移趋于稳定时进行,以便调正帽梁尺寸,使码头前沿线位置偏差符合质量标准,并可防止帽梁在垂直方向产生有害的裂缝。在挖泥过程中,应对板桩墙和锚碇的位移进行监测。四、拉杆安装

40~80mm圆钢,两端铰接,中间用紧张器相连,可调初始应力。安装注意事项1、沿一定间距(4~6m)沿各条拉杆轴线设木桩或砼短桩,作为拉杆支承点,以消除自重产生的附加应力。若不设支承桩就地铺设,拉杆上要设防压罩,罩顶距杆15~20cm。2、两端设铰的拉杆,要使铰的转动方向处于垂直平面内。3、拉杆安装前预先作防腐处理(除锈后涂防锈漆,外缠沥青玻璃纤维布片)五、锚碇系统和墙后回填

板桩墙后回填应在拉杆安装之后进行。如为板式锚碇系统,尽可能先填其被动土压区的土,后填墙后土,沿墙纵

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论