下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
数学题/shuxue知识点总结/knowledge初二数学知识点:相似三角形三角形的证明题[初二数学]题型:解答题问题症结:大概知道解题方向了,但没有解出来,请老师分析考查知识点:等腰三角形的性质相似三角形的性质及判定难度:难解析过程:规律方法:第一问:利用角平分线以及直角三角形中两个锐角的和为直角,最后得到一个等腰三角形,从而证明。第二问:利用两次内角平分线定理,利用三角形相似从而得到关于CE的一个等式,解方程求出CE。如图,点C,D在线段AB上[初二数学]题型:解答题如图,点C,D在线段AB上,△PCD是等边三角形,且△ACP∽△PDB。求∠APB的大小。想要详细的,最好每一步的原因都写出来,便于理解,谢谢老师们了问题症结:对此题的想法是这样的,但是算出来的结果不正确,请老师分析考查知识点:相似三角形的性质及判定难度:难解析过程:解:(1)∵△PCD是等边三角形,∴∠PCD=60°又∵∠PCD为△PCA的一个外角,∴∠PCD=∠CPA+∠CAP.若△ACP∽△PDB,那么∠DPB=∠CAP,即∠DPB+∠CPA=∠PCD=60°,又∵△PCD为等边三角形∴∠CPD=60°∴∠APB=120°规律方法:根据相似三角形性质可解。知识点:相似三角形所属知识点:[相似]包含次级知识点:相似三角形的性质及判定知识点总结一、平行线分线段成比例定理及其推论:1.定理:三条平行线截两条直线,所得的对应线段成比例。2.推论:平行于三角形一边的直线截其他两边(或两边的延长线)所得的对应线段成比例。3.推论的逆定理:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条线段平行于三角形的第三边。二、相似预备定理:平行于三角形的一边,并且和其他两边相交的直线,截得的三角形的三边与原三角形三边对应成比例。三、相似三角形:1.定义:对应角相等,对应边成比例的三角形叫做相似三角形。2.性质:(1)相似三角形的对应角相等;(2)相似三角形的对应线段(边、高、中线、角平分线)成比例;(3)相似三角形的周长比等于相似比,面积比等于相似比的平方。说明:①等高三角形的面积比等于底之比,等底三角形的面积比等于高之比;②要注意两个图形元素的对应。3.判定定理:(1)两角对应相等,两三角形相似;(2)两边对应成比例,且夹角相等,两三角形相似;(3)三边对应成比例,两三角形相似;(4)如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角对应成比例,那么这两个直角三角形相似。四、三角形相似的证题思路:五、利用相似三角形证明线段成比例的一般步骤:一“定”:先确定四条线段在哪两个可能相似的三角形中;二“找”:再找出两个三角形相似所需的条件;三“证”:根据分析,写出证明过程。如果这两个三角形不相似,只能采用其他方法,如找中间比或引平行线等。六、相似与全等:全等三角形是相似比为1的相似三角形,即全等三角形是相似三角形的特例,它们之间的区别与联系:1.共同点它们的对应角相等,不同点是边长的大小,全等三角形的对应边相等,而相似三角形的对应的边成比例。2.判定方法不同,相似三角形只求形状相同的,大小不一定相等,所以改“对应边相等”成“对应边成比例”。
常见考法(1)利用判定定理证明三角形相似;(2)利用三角形相似解决圆、函数的有关问题。误区提醒(1)根据相似三角形找对应边时,出现失误找错对应边,因此在写比例式时出错,导致解题错误信息;(2)在定理的实际应用中,常常忽
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 环境经济学试题库(含参考答案)
- 护理教育导论模拟练习题含答案
- 保安跨省派遣合同范例
- 2025年喀什货运上岗证考试题
- 个人占地协议合同范例
- 公路汽车租赁合同范例
- 活动方式合同范例
- 2025年杭州货运从业资格证考试模拟题库
- 天府新区航空旅游职业学院《审计学2(注会)》2023-2024学年第一学期期末试卷
- 2025年泰安驾驶资格证模拟考试
- 中医科进修总结汇报
- 初中英语比较级和最高级专项练习题含答案
- 激光技术在能源、环保、农业等领域的应用
- 【高分复习笔记】周小普《广播电视概论》笔记和课后习题详解
- 中国玉石及玉文化鉴赏智慧树知到期末考试答案2024年
- MOOC 物理与艺术-南京航空航天大学 中国大学慕课答案
- 《旅游财务管理》课件-1认识旅游企业
- (正式版)JBT 5300-2024 工业用阀门材料 选用指南
- 工艺工程师的成长计划书
- 家政运营方案
- 会展英语教学大纲
评论
0/150
提交评论