




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
重难点07全等三角形中“倍长中线”模型【知识梳理】倍长中线是指加倍延长中线,使所延长部分与中线相等,往往需要连接相应的顶点,则对应角对应边都对应相等。常用于构造全等三角形。中线倍长法多用于构造全等三角形和证明边之间的关系(通常用“SAS”证明)(注:一般都是原题已经有中线时用)。三角形一边的中线(与中点有关的线段),或中点,通常考虑倍长中线或类中线,构造全等三角形.把该中线延长一倍,证明三角形全等,从而运用全等三角形的有关知识来解决问题的方法.图一图二图三【考点剖析】例1、如图,在△ABC中,AD平分∠BAC,且BD=CD.求证:AB=AC.【变式1】如图1,已知中,是边上的中线.求证:.【变式2】如图,在△ABC中,AD为BC边上的中线.(1)按要求作图:延长AD到点E,使DE=AD;连接BE.(2)求证:△ACD≌△EBD.(3)求证:AB+AC>2AD.(4)若AB=5,AC=3,求AD的取值范围.【变式3】如图,CB是△AEC的中线,CD是△ABC的中线,且AB=AC.求证:①CE=2CD;②CB平分∠DCE.例2.如图,在△ABC中,D是BC的中点,E是AD上一点,BE=AC,BE的延长线交AC于点F.求证:∠AEF=∠EAF.【变式1】EF∥AD交CA的延长线于点F,交AB于点G,BG=CF.求证:AD为△ABC的角平分线.例3.如图,在ABC中,AC=2AB,AD平分∠BAC,延长CB到点E,使BE=BD,连接AE.(1)依题意补全图形;(2)试判断AE与CD的数量关系,并进行证明.【变式】阅读理解:(1)如图1,在中,若,,求边上的中线的取值范围.解决此问题可以用如下方法:延长到点,使得,再连接,把,,集中在中,利用三角形三边关系即可判断中线的取值范围是______.(2)解决问题:如图2,在中,是边上的中点,,交于点,交于点,连接,求证:.(3)问题拓展:如图3,在中,是边上的中点,延长至,使得,求证:.【过关检测】一.选择题(共6小题)1.(2022秋•天门期中)AD是△ABC的边BC上的中线,AB=12,AC=8,中线AD的取值范围是()A.8<AD<12 B.4<AD<20 C.2<AD<10 D.4<AD<62.(2022秋•临洮县期中)如图所示,△ABC中,AB=5,AC=9,则BC边上的中线AD的取值范围是()A.4<AD<14 B.0<AD<14 C.2<AD<7 D.5<AD<93.(2022秋•义乌市校级月考)如图,在△ABC中,AD为BC边上的中线,若AB=4,AC=2,则AD的取值范围是()A.1<AD<3 B.2<AD<4 C.2<AD<6 D.2<AD<34.(2022秋•如皋市校级月考)如图,在△ABC中,AB=6,AC=8,AD是边BC上的中线,则AD长的取值范围是()A.6<AD<8 B.6≤AD≤8 C.1<AD<7 D.1≤AD≤75.(2022秋•灵山县期中)如图,已知AD是△ABC中BC边上的中线,AB=5,AC=3,则AD的取值范围是()A.2<AD<8 B.1<AD<4 C.2<AD<5 D.4≤AD≤86.(2022秋•朝阳区校级期中)老师布置的作业中有这么一道题:如图,在△ABC中,D为BC的中点,若AC=3,AD=4.则AB的长不可能是()A.5B.7C.8D.9甲同学认为AB,AC,AD这条三边不在同一个三角形中,无法解答,老师给的题目有错误.乙同学认为可以从中点D出发,构造辅助线,利用全等的知识解决.丙同学认为可以从点C作平行线,构造辅助线,利用全等的知识解决.你认为正确的是()A.甲 B.乙 C.丙 D.乙和丙二.填空题(共4小题)7.(2022秋•青田县期中)如图,在△ABC中,AB=10,AC=6,则BC边上的中线AD的取值范围是.8.(2022秋•大连月考)在△ABC中,AB=6,AC=8,则BC边上中线AD的取值范围为.9.(2022秋•鄞州区校级期末)如图,在Rt△ABC中,∠ACB=90°,D为AB的中点,连结DC,作DM⊥DC交AC于点M.若AB=10,AM=2,则CM=.10.(2022秋•东宝区校级月考)在△ABC中,AB=6,AC=4,则BC边上的中线AD的取值范围是.三.解答题(共14小题)11.(2021秋•齐河县期末)(1)方法呈现:如图①:在△ABC中,若AB=6,AC=4,点D为BC边的中点,求BC边上的中线AD的取值范围.解决此问题可以用如下方法:延长AD到点E使DE=AD,再连接BE,可证△ACD≌△EBD,从而把AB、AC,2AD集中在△ABE中,利用三角形三边的关系即可判断中线AD的取值范围是(直接写出范围即可).这种解决问题的方法我们称为倍长中线法;(2)探究应用:如图②,在△ABC中,点D是BC的中点,DE⊥DF于点D,DE交AB于点E,DF交AC于点F,连接EF,判断BE+CF与EF的大小关系并证明;(3)问题拓展:如图③,在四边形ABCD中,AB∥CD,AF与DC的延长线交于点F、点E是BC的中点,若AE是∠BAF的角平分线.试探究线段AB,AF,CF之间的数量关系,并加以证明.12.(2021秋•南充期末)如图,AD是△ABC的中线,F为AD上一点,E为AD延长线上一点,且DF=DE.求证:BE∥CF.13.(2022秋•中山市期末)如图,已知△ABC.(1)尺规作图:作∠BAC的角平分线交BC于点D(不写作法,保留作图痕迹);(2)在(1)的条件下,当点D为BC中点时,求证:△ABC是等腰三角形.14.(2022秋•朝阳区校级月考)阅读下面的题目及分析过程,并按要求进行证明.已知:如图,E是BC的中点,点A在DE上,且∠BAE=∠CDE.求证:AB=CD.分析:证明两条线段相等,常用的一般方法是应用全等三角形或等腰三角形的判定和性质,观察本题中要证明的两条线段,它们不在同一个三角形中,且它们分别所在的两个三角形也不全等.因此,要证AB=CD,必须添加适当的辅助线,构造全等三角形或等腰三角形.现给出如下三种添加辅助线的方法,请任意选择其中一种,对原题进行证明.15.(2022秋•梅里斯区期末)阅读下面的题目及分析过程,并按要求进行证明.已知:如图,点E是BC的中点,点A在DE上,且∠BAE=∠CDE.求证:AB=CD.分析:证明两条线段相等,常用的方法是应用全等三角形或等腰三角形的判定和性质,观察本题中要证明的两条线段,它们不在同一个三角形中,且它们分别所在的两个三角形也不全等,因此,要证AB=CD,必须添加适当的辅助线,构造全等三角形或等腰三角形.(1)现给出如下两种添加辅助线的方法,请任意选出其中一种,对原题进行证明.①如图1,延长DE到点F,使EF=DE,连接BF;②如图2,分别过点B、C作BF⊥DE,CG⊥DE,垂足分别为点F,G.(2)请你在图3中添加不同于上述的辅助线,并对原题进行证明.16.(2022秋•常德期末)(1)【问题情境】课外兴趣小组活动时,老师提出了如下问题:如图1,在△ABC中,若AB=13,AC=9,求BC边上的中线AD的取值范围.小明在组内经过合作交流,得到了如下的解决方法,延长AD至点E,使DE=AD,连接BE,容易证得△ADC≌△EDB,再由“三角形的三边关系”可求得AD的取值范围是.解后反思:题目中出现“中点”、“中线”等条件,可考虑延长中线构造全等三角形,把分散的已知条件和所求证的结论集中到同一个三角形之中.(2)【初步运用】如图2,AD是△ABC的中线,BE交AC于E,交AD于F,且∠FAE=∠AFE.若AE=4,EC=3,求线段BF的长.(3)【拓展提升】如图3,在△ABC中,D为BC的中点,DE⊥DF分别交AB,AC于点E,F.求证:BE+CF>EF.17.(2022秋•句容市月考)(1)如图1,AD是△ABC的中线,延长AD至点E,使ED=AD,连接CE.①证明△ABD≌△ECD;②若AB=5,AC=3,设AD=x,可得x的取值范围是;(2)如图2,在△ABC中,D是BC边上的中点,DE⊥DF,DE交AB于点E,DF交AC于点F,连接EF,求证:BE+CF>EF.18.(2021秋•沙坪坝区校级期末)△ABC中,AB=AC,以BC为边,在BC右侧作等边△BCD.(1)如图1,连接AD与BC交于点P,,BD=2,求△ABD的面积;(2)如图2,E为DC延长线上一点,连接AE、BE,G为AC的中点,连接BG、EG,AE=DE,证明:BG⊥EG.19.(2022秋•厦门月考)(1)在△ABC中,AB=5,AC=3,求BC边上的中线AD的取值范围.(2)受到(1)启发,请你证明下面的问题:如图,在△ABC中,D是BC边上的中点,DE⊥DF,DE交AB于点E,DF交AC于点F,连接EF.求证:BE+CF>EF.20.(2022秋•南沙区校级期末)如图,在△ABC中,点D是AC的中点,分别以AB,BC为腰向△ABC外作等腰三角形ABM和等腰三角形BCN,其中,AB=BM,BC=BN,∠ABM=120°,∠NBC=60°,连接MN.(1)请写出BD与MN的数量关系,并说明理由.(2)延长DB交MN于点F,求∠MFB的度数.21.(2022秋•桐柏县期中)(1)阅读理解:如图①,在△ABC中,若AB=8,AC=5,求BC边上的中线AD的取值范围.可以用如下方法:将△ACD绕着点D逆时针旋转180°得到△EBD,在△ABE中,利用三角形三边的关系即可判断中线AD的取值范围是;(2)问题解决:如图②,在△ABC中,D是BC边上的中点,DE⊥DF于点D,DE交AB于点E,DF交AC于点F,连接EF,求证:BE+CF>EF;(3)问题拓展:如图③,在四边形ABCD中,∠B+∠D=180°,CB=CD,∠BCD=100°,以C为顶点作一个50°的角,角的两边分别交AB、AD于E、F两点,连接EF,探索线段BE,DF,EF之间的数量关系,并说明理由.22.(2022秋•宝应县校级月考)(1)阅读理解:如图①,在△ABC中,若AB=10,AC=6,求BC边上的中线AD的取值范围.解决此问题可以用如下方法:延长AD到点E使DE=AD,再连接BE(或将△ACD绕着点D逆时针旋转180°得到△EBD),把AB、AC,2AD集中在△ABE中,利用三角形三边的关系即可判断.中线AD的取值范围是;(2)问题解决:如图②,在△ABC中,D是BC边上的中点,DE⊥DF于点D,DE交AB于点E,DF交AC于点F,连接EF,求证:BE+CF>EF;(3)问题拓展:如图③,在四边形ABCD中,∠B+∠D=180°,CB=CD,∠BCD=140°,以C为顶点作一个70°角,角的两边分别交AB,AD于E、F两点,连接EF,探索线段BE,DF,EF之间的数量关系,并加以证明.23.(2022秋•平舆县期末)【阅读理解】课外兴趣小组活动时,老师提出了如下问题:如图1,△ABC中,若AB=8,AC=6,求BC边上的中线AD的取值范围.小明在组内经过合作交流,得到了如下的解决方法:延长AD到点E,使DE=AD,请根据小明的方法思考:(1)由已知和作图能得到△ADC≌△EDB的理由是.A.SSSB.SASC.AASD.HL(2)求得AD的取值范围是.A.6<AD<8B.6≤AD≤8C.1<AD<7D.1≤AD≤7【感悟】解题时,条件中若出现“中点”“中线”字样,可以考虑延长中线构造全等三角形,把分散的已知条件和所求证的结论集合到同一个三角形中.【问题解决】(3)如图2,AD是△ABC的中线,BE交AC于E,交AD于F,且AE=EF.求证:AC
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 六一创新活动方案
- 六一商场开业活动方案
- 六一广告活动方案
- 六一活动做饺子活动方案
- 六一活动吃喝玩乐活动方案
- 六一活动捉小鸡活动方案
- 六一活动美容活动方案
- 六一烹饪活动方案
- 六一舞蹈趣味活动方案
- 六一趣味捞鱼活动方案
- 5.2做自强不息的中国人(教学设计)2024-2025学年七年级道德与法治下册(统编版2024)
- 2025 年中职高考对口升学(幼儿教育学)真题试卷附参考答案
- 2025承诺合同(个人承诺)
- 2025-2030中国智能视频行业调研分析及发展趋势预测研究报告
- 安徽省2024-2025学年八年级信息技术水平会考操作题
- 墓地征用协议书范本
- 2025年农艺工(高级)职业技能鉴定参考试题库(含答案)
- 临床气管插管拔管后吞咽障碍评估与干预实践应用
- 海南海虹化纤工业有限公司地块第二阶段土壤污染状况调查报告
- 坚持教育优先发展
- 外研版三年级下册英语全册单元测试卷(含期中期末试卷及听力音频)
评论
0/150
提交评论