版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
专题51图形的平移、对称与旋转(1)(全国一年)学校:___________姓名:___________班级:___________考号:___________一、单选题1.(2020·湖北宜昌?中考真题)下面四幅图是摄影爱好者抢拍的一组照片,从对称美的角度看,拍得最成功的是().A. B. C. D.2.(2020·广东中考真题)在平面直角坐标系中,点关于轴对称的点的坐标为()A. B. C. D.3.(2020·辽宁抚顺?中考真题)下列图形中,既是轴对称图形又是中心对称图形的是()A. B. C. D.4.(2020·湖南娄底?中考真题)我国汽车工业迅速发展,国产汽车技术成熟,下列汽车图标是中心对称图形的是()A. B. C. D.5.(2020·湖北黄石?中考真题)下列图形中,既是中心对称又是轴对称图形的是()A. B. C. D.6.(2020·广东广州?中考真题)如图所示的圆锥,下列说法正确的是()A.该圆锥的主视图是轴对称图形B.该圆锥的主视图是中心对称图形C.该圆锥的主视图既是轴对称图形,又是中心对称图形D.该圆锥的主视图既不是轴对称图形,又不是中心对称图形7.(2020·内蒙古呼和浩特?中考真题)下面四幅图是我国传统文化与艺术中的几个经典图案,其中不是轴对称图形的是()A. B. C. D.8.(2020·贵州毕节?中考真题)下列图形中,是中心对称的图形的是()A.直角三角形 B.等边三角形 C.平行四边形 D.正五边形9.(2020·湖南永州?中考真题)永州市教育部门高度重视校园安全教育,要求各级各类学校从认识安全警告标志入手开展安全教育.下列安全图标不是轴对称的是()A. B. C. D.10.(2020·广西中考真题)下列图形是中心对称图形的是()A. B.C. D.11.(2020·山东淄博?中考真题)下列图形中,不是轴对称图形的是()A. B. C. D.12.(2020·四川绵阳?中考真题)如图是以正方形的边长为直径,在正方形内画半圆得到的图形,则此图形的对称轴有()A.2条 B.4条 C.6条 D.8条13.(2020·内蒙古呼伦贝尔?中考真题)下列图形中,既是轴对称图形,又是中心对称图形的是()A. B. C. D.14.(2020·辽宁大连?中考真题)在直角坐标系中,点P(3,1)关于x轴对称点的坐标是()A.(3,1) B.(﹣3,1) C.(3,﹣1) D.(﹣3,﹣1)15.(2020·甘肃天水?中考真题)下列图形中,是中心对称图形但不是轴对称图形的是()A. B. C. D.16.(2020·湖北恩施?中考真题)下列交通标识,既是中心对称图形,又是轴对称图形的是().A. B. C. D.17.(2020·湖南长沙?中考真题)下列图形中,是轴对称图形但不是中心对称图形的是()A. B.C. D.18.(2020·江苏徐州?中考真题)下列垃圾分类标识的图案既是轴对称图形,又是中心对称图形的是()A. B. C. D.19.(2020·江苏盐城?中考真题)下列图形中,属于中心对称图形的是:()A. B.C. D.20.(2020·湖北黄石?中考真题)在平面直角坐标系中,点G的坐标是,连接,将线段绕原点O旋转,得到对应线段,则点的坐标为()A. B. C. D.21.(2020·湖南郴州?中考真题)下列图形是中心对称图形的是()A. B.C. D.22.(2020·山东烟台?中考真题)下列关于数字变换的图案中,是中心对称图形但不是轴对称图形的是()A. B. C. D.23.(2020·四川凉山?中考真题)点关于x轴对称的点的坐标是()A. B. C. D.24.(2020·内蒙古赤峰?中考真题)下列图形绕某一点旋转一定角度都能与原图形重合,其中旋转角度最小的是()A.等边三角形 B.平行四边形C.正八边形 D.圆及其一条弦25.(2020·黑龙江鹤岗?中考真题)下列图标中是中心对称图形的是()A. B. C. D.26.(2020·山西中考真题)自新冠肺炎疫情发生以来,全国人民共同抗疫,各地积极普及科学防控知识.下面是科学防控知识的图片,图片上有图案和文字说明,其中的图案是轴对称图形的是()A.
B.
C.
D.
27.(2020·黑龙江穆棱?朝鲜族学校中考真题)如图,在菱形OABC中,点B在x轴上,点A的坐标为(2,2),将菱形绕点O旋转,当点A落在x轴上时,点C的对应点的坐标为()A.或 B.C. D.或28.(2020·黑龙江穆棱?朝鲜族学校中考真题)下列图形中,既是轴对称图形又是中心对称图形的有()A.1个 B.2个 C.3个 D.4个29.(2020·青海中考真题)将一张四条边都相等的四边形纸片按下图中①②的方式沿虚线依次对折后,再沿图③中的虚线裁剪,最后将图④中的纸片打开铺平,所得图案应是()A. B. C. D.30.(2020·广东深圳?中考真题)下列图形中既是轴对称图形,也是中心对称图形的是()A. B. C. D.31.(2020·海南中考真题)如图,在中,将绕点逆时针旋转得到,使点落在边上,连接,则的长度是()A. B. C. D.32.(2020·江苏南通?中考真题)以原点为中心,将点P(4,5)按逆时针方向旋转90°,得到的点Q所在的象限为()A.第一象限 B.第二象限 C.第三象限 D.第四象限33.(2020·山东滨州?中考真题)下列图形:线段、等边三角形、平行四边形、圆,其中既是轴对称图形,又是中心对称图形的个数为()A.1 B.2 C.3 D.434.(2020·江苏镇江?中考真题)如图①,AB=5,射线AM∥BN,点C在射线BN上,将△ABC沿AC所在直线翻折,点B的对应点D落在射线BN上,点P,Q分别在射线AM、BN上,PQ∥AB.设AP=x,QD=y.若y关于x的函数图象(如图②)经过点E(9,2),则cosB的值等于()A. B. C. D.35.(2020·内蒙古赤峰?中考真题)如图,Rt△ABC中,∠ACB=90°,AB=5,AC=3,把Rt△ABC沿直线BC向右平移3个单位长度得到△A'B'C',则四边形ABC'A'的面积是()A.15 B.18 C.20 D.2236.(2020·浙江绍兴?中考真题)如图,点O为矩形ABCD的对称中心,点E从点A出发沿AB向点B运动,移动到点B停止,延长EO交CD于点F,则四边形AECF形状的变化依次为()A.平行四边形→正方形→平行四边形→矩形B.平行四边形→菱形→平行四边形→矩形C.平行四边形→正方形→菱形→矩形D.平行四边形→菱形→正方形→矩形37.(2020·四川内江?中考真题)下列图形是我国国产品牌汽车的标识,在这些汽车标识中,是中心对称图形的是()A. B. C. D.38.(2020·辽宁大连?中考真题)如图,中,.将绕点B逆时针旋转得到,使点C的对应点恰好落在边上,则的度数是()A. B. C. D.39.(2020·湖南衡阳?中考真题)下面的图形是用数学家名字命名的,其中既是轴对称图形又是中心对称图形的是()A. B. C. D.40.(2020·山东枣庄?中考真题)如图,平面直角坐标系中,点在第一象限,点在轴的正半轴上,,,将绕点逆时针旋转,点的对应点的坐标是()A. B. C. D.41.(2020·甘肃兰州?中考真题)如图,将▱ABCD沿对角线BD折叠,使点A落在点E处,交BC于点F,若,,则为A. B. C. D.42.(2020·陕西中考真题)在平面直角坐标系中,将抛物线y=x2﹣(m﹣1)x+m(m>1)沿y轴向下平移3个单位.则平移后得到的抛物线的顶点一定在()A.第一象限 B.第二象限 C.第三象限 D.第四象限43.(2020·江苏南通?中考真题)如图,在△ABC中,AB=2,∠ABC=60°,∠ACB=45°,D是BC的中点,直线l经过点D,AE⊥l,BF⊥l,垂足分别为E,F,则AE+BF的最大值为()A. B.2 C.2 D.344.(2020·江苏宿迁?中考真题)如图,在平面直角坐标系中,Q是直线y=﹣x+2上的一个动点,将Q绕点P(1,0)顺时针旋转90°,得到点,连接,则的最小值为()A. B. C. D.45.(2020·四川绵阳?中考真题)如图,在四边形ABCD中,AD∥BC,∠ABC=90°,AB=2,AD=2,将△ABC绕点C顺时针方向旋转后得△,当恰好经过点D时,△CD为等腰三角形,若B=2,则A=()A. B.2 C. D.二、填空题46.(2020·广西河池?中考真题)如图,在Rt△ABC中,∠B=90°,∠A=30°,AC=8,点D在AB上,且BD=,点E在BC上运动.将△BDE沿DE折叠,点B落在点B′处,则点B′到AC的最短距离是_____.47.(2020·辽宁铁岭?中考真题)一张菱形纸片的边长为,高等于边长的一半,将菱形纸片沿直线折叠,使点与点重合,直线交直线于点,则的长为____________.48.(2020·黑龙江鹤岗?中考真题)如图,在边长为的正方形中将沿射线平移,得到,连接、.求的最小值为______.49.(2020·江苏镇江?中考真题)如图,在△ABC中,BC=3,将△ABC平移5个单位长度得到△A1B1C1,点P、Q分别是AB、A1C1的中点,PQ的最小值等于_____.50.(2020·山东滨州?中考真题)如图,点P是正方形ABCD内一点,且点P到点A、B、C的距离分别为则正方形ABCD的面积为________51.(2020·四川绵阳?中考真题)平面直角坐标系中,将点A(﹣1,2)先向左平移2个单位,再向上平移1个单位后得到的点A1的坐标为_____.52.(2020·江苏宿迁?中考真题)如图,在矩形ABCD中,AB=1,AD=,P为AD上一个动点,连接BP,线段BA与线段BQ关于BP所在的直线对称,连接PQ,当点P从点A运动到点D时,线段PQ在平面内扫过的面积为_____.53.(2020·四川凉山?中考真题)如图,矩形ABCD中,AD=12,AB=8,E是AB上一点,且EB=3,F是BC上一动点,若将沿EF对折后,点B落在点P处,则点P到点D的最短距为.54.(2020·四川眉山?中考真题)如图,在中,,.将绕点按顺时针方向旋转至的位置,点恰好落在边的中点处,则的长为________.55.(2020·山东烟台?中考真题)如图,已知点A(2,0),B(0,4),C(2,4),D(6,6),连接AB,CD,将线段AB绕着某一点旋转一定角度,使其与线段CD重合(点A与点C重合,点B与点D重合),则这个旋转中心的坐标为_____.56.(2020·山东淄博?中考真题)如图,将△ABC沿BC方向平移至△DEF处.若EC=2BE=2,则CF的长为_____.57.(2020·甘肃金昌?中考真题)如图,在平面直角坐标系中,的顶点,的坐标分别为,,把沿轴向右平移得到,如果点的坐标为,则点的坐标为__________.58.(2020·江苏镇江?中考真题)点O是正五边形ABCDE的中心,分别以各边为直径向正五边形的外部作半圆,组成了一幅美丽的图案(如图).这个图案绕点O至少旋转_____°后能与原来的图案互相重合.59.(2020·江苏泰州?中考真题)以水平数轴的原点为圆心过正半轴上的每一刻度点画同心圆,将逆时针依次旋转、、、、得到条射线,构成如图所示的“圆”坐标系,点、的坐标分别表示为、,则点的坐标表示为_______.60.(2020·四川内江?中考真题)如图,在矩形ABCD中,,,若点M、N分别是线段DB、AB上的两个动点,则的最小值为___________________.61.(2020·广西中考真题)在平面直角坐标系中,以原点为对称中心,把点A(3,4)逆时针旋转90°,得到点B,则点B的坐标为__________.62.(2020·湖南永州?中考真题)在平面直角坐标系中的位置如图所示,且,在内有一点,M,N分别是边上的动点,连接,则周长的最小值是_________.63.(2020·宁夏中考真题)如图,直线与x轴、y轴分别交于A、B两点,把绕点B逆时针旋转90°后得到,则点的坐标是_____.64.(2020·广西玉林?中考真题)如图,在边长为3的正六边形ABCDEF中,将四边形ADEF绕点A顺时针旋转到四边形处,此时边与对角线AC重叠,则图中阴影部分的面积是___________.65.(2020·广东广州?中考真题)如图,正方形中,绕点逆时针旋转到,,分别交对角线于点,若,则的值为_______.66.(2020·广东广州?中考真题)如图,点的坐标为,点在轴上,把沿轴向右平移到,若四边形的面积为9,则点的坐标为_______.67.(2020·青海中考真题)如图,将周长为8的沿BC边向右平移2个单位,得到,则四边形的周长为________.68.(2020·四川宜宾?中考真题)如图,四边形中,是AB上一动点,则的最小值是________________69.(2020·江苏盐城?中考真题)如图,已知点,直线轴,垂足为点其中,若与关于直线对称,且有两个顶点在函数的图像上,则的值为:_______________________.70.(2020·湖北恩施?中考真题)如图,在平面直角坐标系中,的顶点坐标分别为:,,.已知,作点关于点的对称点,点关于点的对称点,点关于点的对称点,点关于点的对称点,点关于点的对称点,…,依此类推,则点的坐标为______.71.(2020·甘肃天水?中考真题)如图,在边长为6的正方形内作,交于点,交于点,连接,将绕点顺时针旋转得到,若,则的长为__________.三、解答题72.(2020·吉林中考真题)如图①、图②、图③都是的正方形网格,每个小正方形的顶点称为格点.,,均为格点.在给定的网格中,按下列要求画图:(1)在图①中,画一条不与重合的线段,使与关于某条直线对称,且,为格点.(2)在图②中,画一条不与重合的线段,使与关于某条直线对称,且,为格点.(3)在图③中,画一个,使与关于某条直线对称,且,,为格点.73.(2020·湖南邵阳?中考真题)已知:如图①,将一块45°角的直角三角板与正方形的一角重合,连接,点M是的中点,连接.(1)请你猜想与的数量关系是__________.(2)如图②,把正方形绕着点D顺时针旋转角().①与的数量关系是否仍成立,若成立,请证明;若不成立,请说明理由;(温馨提示:延长到点N,使,连接)②求证:;③若旋转角,且,求的值.(可不写过程,直接写出结果)74.(2020·江苏常州?中考真题)如图1,点B在线段上,Rt△≌Rt△,,,.(1)点F到直线的距离是_________;(2)固定△,将△绕点C按顺时针方向旋转30°,使得与重合,并停止旋转.①请你在图1中用直尺和圆规画出线段经旋转运动所形成的平面图形(用阴影表示,保留画图痕迹,不要求写画法)该图形的面积为_________;②如图2,在旋转过程中,线段与交于点O,当时,求的长.75.(2020·宁夏中考真题)在平面直角坐标系中,的三个顶点的坐标分别是.
(1)画出关于x轴成轴对称的;(2)画出以点O为位似中心,位似比为1∶2的.76.(2020·湖北荆州?中考真题)如图,将绕点B顺时针旋转60度得到,点C的对应点E恰好落在AB的延长线上,连接AD.(1)求证:;(2)若AB=4,BC=1,求A,C两点旋转所经过的路径长之和.
77.(2020·甘肃金昌?中考真题)如图,点,分别在正方形的边,上,且,把绕点顺时针旋转得到.(1)求证:≌.(2)若,,求正方形的边长.78.(2020·黑龙江鹤岗?中考真题)如图,正方形网格中,每个小正方形的边长都是一个单位长度,在平面直角坐标系中,的三个顶点、、均在格点上(1)将向左平移个单位得到,并写出点的坐标;(2)画出绕点顺时针旋转后得到的,并写出点的坐标;(3)在(2)的条件下,求在旋转过程中扫过的面积(结果保留).79.(2020·辽宁丹东?中考真题)如图,在平面直角坐标系中,网格的每个小方格都是边长为1个单位长度的正方形,点,,的坐标分别为,,,先以原点为位似中心在第三象限内画一个,使它与位似,且相似比为2:1,然后再把绕原点逆时针旋转90°得到.(1)画出,并直接写出点的坐标;(2)画出,直接写出在旋转过程中,点到点所经过的路径长.80.(2020·浙江嘉兴?中考真题)在一次数学研究性学习中,小兵将两个全等的直角三角形纸片ABC和DEF拼在一起,使点A与点F重合,点C与点D重合(如图1),其中∠ACB=∠DFE=90°,BC=EF=3cm,AC=DF=4cm,并进行如下研究活动.活动一:将图1中的纸片DEF沿AC方向平移,连结AE,BD(如图2),当点F与点C重合时停止平移.(思考)图2中的四边形ABDE是平行四边形吗?请说明理由.(发现)当纸片DEF平移到某一位置时,小兵发现四边形ABDE为矩形(如图3).求AF的长.活动二:在图3中,取AD的中点O,再将纸片DEF绕点O顺时针方向旋转α度(0≤α≤90),连结OB,OE(如图4).(探究)当EF平分∠AEO时,探究OF与BD的数量关系,并说明理由.81.(2020·辽宁朝阳?中考真题)如图所示的平面直角坐标系中,的三个顶点坐标分别为,请按如下要求画图:(1)以坐标原点O为旋转中心,将顺时针旋转90°,得到,请画出;(2)以坐标原点O为位似中心,在x轴下方,画出的位似图形,使它与的位似比为.82.(2020·四川内江?中考真题)如图,正方形ABCD中,P是对角线AC上的一个动点(不与A、C重合),连结BP,将BP绕点B顺时针旋转到BQ,连结QP交BC于点E,QP延长线与边AD交于点F.(1)连结CQ,求证:;(2)若,求的值;(3)求证:.83.(2020·江苏盐城?中考真题)木门常常需要雕刻美丽的图案.(1)图①为某矩形木门示意图,其中长为厘米,长为厘米,阴影部分是边长为厘米的正方形雕刻模具,刻刀的位置在模具的中心点处,在雕刻时始终保持模具的一边紧贴木门的一边,所刻图案如虚线所示,求图案的周长;(2)如图,对于中的木门,当模具换成边长为厘米的等边三角形时,刻刀的位置仍在模具的中心点处,雕刻时也始终保持模具的一边紧贴本门的一边,使模具进行滑动雕刻.但当模具的一个顶点与木门的一个顶点重合时,需将模具绕着重合点进行旋转雕刻,直到模具的另一边与木门的另一边重合.再滑动模具进行雕刻,如此雕刻一周,请在图中画出雕刻所得图案的草图,并求其周长.84.(2020·陕西中考真题)问题提出(1)如图1,在Rt△ABC中,∠ACB=90°,AC>BC,∠ACB的平分线交AB于点D.过点D分别作DE⊥AC,DF⊥BC.垂足分别为E,F,则图1中与线段CE相等的线段是_____.问题探究(2)如图2,AB是半圆O的直径,AB=8.P是上一点,且,连接AP,BP.∠APB的平分线交AB于点C,过点C分别作CE⊥AP,CF⊥BP,垂足分别为E,F,求线段CF的长.问题解决(3)如图3,是某公园内“少儿活动中心”的设计示意图.已知⊙O的直径AB=70m,点C在⊙O上,且CA=CB.P为AB上一点,连接CP并延长,交⊙O于点D.连接AD,BD.过点P分别作PE⊥AD,PF⊥BD,重足分别为E,F.按设计要求,四边形PEDF内部为室内活动区,阴影部分是户外活动区,圆内其余部分为绿化区.设AP的长为x(m),阴影部分的面积为y(m2).①求y与x之间的函数关系式;②按照“少儿活动中心”的设计要求,发现当AP的长度为30m时,整体布局比较合理.试求当AP=30m时.室内活动区(四边形PEDF)的面积.85.(2020·山西中考真题)综合与实践问题情境:如图①,点为正方形内一点,,将绕点按顺时针方向旋转,得到(点的对应点为点),延长交于点,连接.猜想证明:(1)试判断四边形的形状,并说明理由;(2)如图②,若,请猜想线段与的数量关系并加以证明;解决问题:(3)如图①,若,,请直接写出的长.86.(2020·湖南郴州?中考真题)如图,在等腰直角三角形中,.点是的中点,以为边作正方形,连接.将正方形绕点顺时针旋转,旋转角为.(1)如图,在旋转过程中,①判断与是否全等,并说明理由;②当时,与交于点,求的长.(2)如图,延长交直线于点.①求证:;②在旋转过程中,线段的长度是否存在最大值?若存在,求出最大值;若不存在,请说明理由.87.(2020·贵州毕节?中考真题)如图(1),在平面直角坐标系中抛物线与轴交于点,与轴交于点,且经过点,连接,,作于点,将沿轴翻折,点的对应点为点.解答下列问题:(1)抛物线的解析式为_______,顶点坐标为________;(2)判断点是否在直线上,并说明理由;(3)如图(2),将图(1)中沿着平移后,得到.若边在线段上,点在抛物线上,连接,求四边形的面积.88.(2020·山东东营?中考真题)如图1,在等腰三角形中,点分别在边上,连接点分别为的中点.(1)观察猜想图1中,线段的数量关系是____,的大小为_____;(2)探究证明把绕点顺时针方向旋转到如图2所示的位置,连接判断的形状,并说明理由;(3)拓展延伸把绕点在平面内自由旋转,若,请求出面积的最大值.89.(2020·辽宁沈阳?中考真题)如图,在平面直角坐标系中,是坐标原点,抛物线经过点和点,(1)求抛物线的表达式;(2)如图,线段绕原点逆时针旋转30°得到线段.过点作射线,点是射线上一点(不与点重合),点关于轴的对称点为点,连接①请直接写出的形状为__________.②设的面积为的面积为是,当时,求点的坐标;(3)如图,在(2)的结论下,过点作,交的延长线于点,线段绕点逆时针旋转,旋转角为得到线段,过点作轴,交射线于点,的角平分线和的角平分线相交于点,当时,请直接写出点的坐标为__________.90.(2020·广西河池?中考真题)如图,在平面直角坐标系xOy中,A(﹣1,2).(1)将点A向右平移3个单位长度,再向上平移1个单位长度,得到点B,则点B的坐标是.(2)点C与点A关于原点O对称,则点C的坐标是.(3)反比例函数的图象经过点B,则它的解析式是.(4)一次函数的图象经过A,C两点,则它的解析式是.91.(2020·湖北宜昌?中考真题)已知函数均为一次函数,m为常数.(1)如图1,将直线绕点逆时针旋转45°得到直线,直线交y轴于点B.若直线恰好是中某个函数的图象,请直接写出点B坐标以及m可能的值;(2)若存在实数b,使得成立,求函数图象间的距离;(3)当时,函数图象分别交x轴,y轴于C,E两点,图象交x轴于D点,将函数的图象最低点F向上平移个单位后刚好落在一次函数图象上,设的图象,线段,线段围成的图形面积为S,试利用初中知识,探究S的一个近似取值范围.(要求:说出一种得到S的更精确的近似值的探究办法,写出探究过程,得出探究结果,结果的取值范围两端的数值差不超过0.01.)92.(2020·辽宁抚顺?中考真题)如图,抛物线()过点和,点是抛物线的顶点,点是轴下方抛物线上的一点,连接,.(1)求抛物线的解析式;(2)如图①,当时,求点的坐标;(3)如图②,在(2)的条件下,抛物线的对称轴交轴于点,交线段于点,点是线段上的动点(点不与点和点重合,连接,将沿折叠,点的对应点为点,与的重叠部分为,在坐标平面内是否存在一点,使以点,,,为顶点的四边形是矩形?若存在,请直接写出点的坐标,若不存在,请说明理由.93.(2020·湖北恩施?中考真题)如图,抛物线经过点,顶点为,对称轴与轴相交于点,为线段的中点.(1)求抛物线的解析式;(2)为线段上任意一点,为轴上一动点,连接,以点为中心,将逆时针旋转,记点的对应点为,点的对应点为.当直线与抛物线只有一个交点时,求点的坐标.(3)在(2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 人教部编版小学六年级上册语文第三单元测试卷含答案(共4套)
- 五金店清货转让协议书范文范本
- 承诺分手一段时间再复合协议书范文
- 二人合伙买卖二手车合同协议书范文
- 携手共创服装电商未来-洞察市场打造双赢合作模式
- 人教版道德与法治八年级下册6.4国家监察机关课件4
- 2023-2024学年云南省楚雄彝族自治州大姚县第一中学高三第一次诊断数学试题试卷
- 2023-2024学年泰安市重点中学高考数学试题模拟试卷
- 电竞狂潮:未来游戏的巨大商机-抓住机遇赢在起跑线上
- 校园安全从我做起建议书(31篇)
- 论文范文浅谈儿童自闭症
- 城市公园管理养护中的难点、重点与建议
- 必看!设备管理必须要懂的一、二、三、四、五
- 空冷岛专题(控制方案、谐波及变压器容量选择)
- 三角函数的图像与性质复习课件
- 初一英语自我介绍PPT课件
- 液氧汽化站安全技术操作规程2018-07.docx
- 督学与校长应彼此“亦师亦友”
- 肺癌的术前后护理案例分析
- 模具专业英文术语大全
- 新教科版(2017版)五年级上册科学 期中测试卷
评论
0/150
提交评论