版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2021年中考数学统一命题的省自治区压轴模拟试卷2021年中考数学压轴模拟试卷02(宁夏专用)(满分120分,答题时间120分钟)一、选择题(本题共8小题,每小题3分,共24分.在每小题给出的四个选项中只有一个是符合题目要求的)1.下列计算正确的是()A.2x+3y=5xy B.(x+1)(x﹣2)=x2﹣x﹣2 C.a2•a3=a6 D.(a﹣2)2=a2﹣4【答案】B【解析】分别根据合并同类项法则,多项式乘多项式的运算法则,同底数幂的乘法法则以及完全平方公式逐一判断即可.A.2x与3y不是同类项,所以不能合并,故本选项不合题意;B.(x+1)(x﹣2)=x2﹣x﹣2,故本选项符合题意;C.a2•a3=a5,故本选项不合题意;D.(a﹣2)2=a2﹣4a+4,故本选项不合题意.2.小明为了解本班同学一周的课外阅读量,随机抽取班上15名同学进行调查,并将调查结果绘制成折线统计图(如图),则下列说法正确的是()A.中位数是3,众数是2 B.众数是1,平均数是2C.中位数是2,众数是2 D.中位数是3,平均数是2.5【答案】C【解析】根据统计图中的数据,求出中位数,平均数,众数,即可做出判断.15名同学一周的课外阅读量为0,1,1,1,1,2,2,2,2,2,2,3,3,4,4,
中位数为2;
平均数为(0×1+1×4+2×6+3×2+4×2)÷15=2;
众数为2.3.某班从甲、乙、丙、丁四位选手中随机选取两人参加校乒乓球比赛,恰好选中甲、乙两位选手的概率是()A.13 B.14 C.16【答案】C【解析】根据题意画出树状图得出所有等情况数和恰好选中甲、乙两位选手的情况数,然后根据概率公式即可得出答案.根据题意画图如下:共用12种等情况数,其中恰好选中甲、乙两位选手的有2种,则恰好选中甲、乙两位选手的概率是24.一副直角三角板如图放置,点C在FD的延长线上,AB∥CF,∠F=∠ACB=90°,则∠DBC的度数为()A.10° B.15° C.18° D.30°【答案】B【分析】直接利用三角板的特点,结合平行线的性质得出∠ABD=60°,进而得出答案.【解析】由题意可得:∠EDF=45°,∠ABC=30°,∵AB∥CF,∴∠ABD=∠EDF=45°,∴∠DBC=45°﹣30°=15°.5.如图,在菱形ABCD中,对角线AC、BD相交于点O,H为BC中点,AC=6,BD=8.则线段OH的长为()A.125 B.52 C.3【答案】B【解析】先根据菱形的性质得到AC⊥BD,OB=OD=12BD=4,OC=OA=12AC=3,再利用勾股定理计算出∵四边形ABCD为菱形,∴AC⊥BD,OB=OD=12BD=4,OC=OA=在Rt△BOC中,BC=3∵H为BC中点,∴OH=12BC6.如图,半径为10的扇形AOB中,∠AOB=90°,C为AB上一点,CD⊥OA,CE⊥OB,垂足分别为D、E.若∠CDE为36°,则图中阴影部分的面积为()A.10π B.9π C.8π D.6π【答案】A【分析】连接OC,易证得四边形CDOE是矩形,则△DOE≌△CEO,得到∠COB=∠DEO=∠CDE=36°,图中阴影部分的面积=扇形OBC的面积,利用扇形的面积公式即可求得.【解析】连接OC,∵∠AOB=90°,CD⊥OA,CE⊥OB,∴四边形CDOE是矩形,∴CD∥OE,∴∠DEO=∠CDE=36°,由矩形CDOE易得到△DOE≌△CEO,∴∠COB=∠DEO=36°∴图中阴影部分的面积=扇形OBC的面积,∵S扇形OBC=36⋅π×10∴图中阴影部分的面积=10π7.如图,函数与函数的图象相交于点.若,则x的取值范围是()A.或 B.或C.或 D.或【答案】D【解析】根据图象可知函数与函数的图象相交于点M、N,若,即观察直线图象在反比例函数图象之上的x的取值范围.如图所示,直线图象在反比例函数图象之上的x的取值范围为或,故本题答案为:或.故选:D【点睛】本题主要考查了反比例函数图象与一次函数图象的交点问题,能利用数形结合求出不等式的解集是解答此题的关键.8.如图为一个长方体,则该几何体主视图的面积为().A.20cm2.B.30cm2.C.40cm2.D.50cm2.【答案】A【解析】根据从正面看所得到的图形,即可得出这个几何体的主视图的面积.该几何体的主视图是一个长为4,宽为5的矩形,所以该几何体主视图的面积为20cm2.二、填空题(本题共8小题,每小题3分,共24分)9.把多项式m2n+6mn+9n分解因式的结果是.【答案】n(m+3)2.【解析】直接提取公因式n,再利用完全平方公式分解因式得出答案.原式=n(m2+6m+9)=n(m+3)2.10.抛物线y=3(x﹣1)2+8的顶点坐标为.【答案】(1,8).【分析】已知抛物线顶点式y=a(x﹣h)2+k,顶点坐标是(h,k).【解析】∵抛物线y=3(x﹣1)2+8是顶点式,∴顶点坐标是(1,8).11.一个盒子中装有标号为1、2、3、4、5的五个小球,这些球除了标号外都相同,从中随机摸出两个小球,则摸出的小球标号之和大于6的概率为.【答案】25【解析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与摸出的两个小球的标号之和大于6的情况,再利用概率公式即可求得答案.画树状图如图所示:∵共有20种等可能的结果,摸出的两个小球的标号之和大于6的有8种结果,∴摸出的两个小球的标号之和大于6的概率为812.我国古代数学经典著作《九章算术》中记载了一个“圆材埋壁”的问题:“今有圆材埋在壁中,不知大小.以锯锯之,深一寸,锯道长一尺.问径几何?”意思是:今有一圆柱形木材,埋在墙壁中,不知其大小.用锯去锯这木材,锯口深寸,锯道长尺(1尺寸).问这根圆形木材的直径是______寸.【答案】26【解析】根据题意可得,由垂径定理可得尺寸,设半径,则,在中,根据勾股定理可得:,解方程可得出木材半径,即可得出木材直径.【详解】解:由题可知,为半径,尺寸,设半径,,在中,根据勾股定理可得:解得:,木材直径为26寸;故答案为:26.【点睛】本题考查垂径定理结合勾股定理计算半径长度.如果题干中出现弦的垂线或者弦的中点,则可验证是否满足垂径定理;与圆有关的题目中如果求弦长或者求半径直径,也可以从题中寻找是否有垂径定理,然后构造直角三角形,用勾股定理求解.13.把直线y=2x﹣1向左平移1个单位长度,再向上平移2个单位长度,则平移后所得直线的解析式为.【答案】y=2x+3.【分析】直接利用一次函数的平移规律进而得出答案.【解析】把直线y=2x﹣1向左平移1个单位长度,得到y=2(x+1)﹣1=2x+1,再向上平移2个单位长度,得到y=2x+3.14.如图,已知∠MON是一个锐角,以点O为圆心,任意长为半径画弧,分别交OM、ON于点A、B,再分别以点A、B为圆心,大于12AB长为半径画弧,两弧交于点C,画射线OC.过点A作AD∥ON,交射线OC于点D,过点D作DE⊥OC,交ON于点E.设OA=10,DE=12,则sin∠MON=【答案】2425【分析】如图,连接DB,过点D作DH⊥ON于H.首先证明四边形AOBD是菱形,解直角三角形求出DH即可解决问题.【解析】如图,连接DB,过点D作DH⊥ON于H.由作图可知,∠AOD=∠DOE,OA=OB,∵AD∥EO,∴∠ADO=∠DOE,∴∠AOD=∠ADO,∴AO=AD,∴AD=OB,AD∥OB,∴四边形AOBD是平行四边形,∵OA=OB,∴四边形AOBD是菱形,∴OB=BD=OA=10,BD∥OA,∴∠MON=∠DBE,∠BOD=∠BDO,∵DE⊥OD,∴∠BOD+∠DEO=90°,∠ODB+∠BDE=90°,∴∠BDE=∠BED,∴BD=BE=10,∴OE=2OB=20,∴OD=O∵DH⊥OE,∴DH=OD⋅DE∴sin∠MON=sin∠DBH=DH15.如图,用等分圆的方法,在半径为OA的圆中,画出了如图所示的四叶幸运草,若OA=2,则四叶幸运草的周长是.【答案】8π.【解析】由题意得:四叶幸运草的周长为4个半圆的弧长=2个圆的周长,∴四叶幸运草的周长=2×2π×2=8π【点评】本题考查了正多边形和圆、正方形的性质以及圆周长公式;由题意得出四叶幸运草的周长=2个圆的周长是解题的关键.16.我国古代数学著作《九章算术》中有这样一个问题:“今有池方一丈,葭(jiā)生其中央,出水一尺,引葭赴岸,适与岸齐问水深几何?”(注:丈、尺是长度单位,1丈=10尺)这段话翻译成现代汉语,即为:如图,有一个水池,水面是一个边长为1丈的正方形,在水池正中央有一根芦苇,它高出水面1尺,如果把这根芦苇拉向水池一边的中点,它的顶端恰好到达池边的水面.则水池里水的深度是_______________尺.【答案】12【解析】首先设水池的深度为x尺,则这根芦苇的长度为(x+1)尺,根据勾股定理可得方程x2+52=(x+1)2即可.【详解】设这个水池深x尺,
由题意得,x2+52=(x+1)2,
解得:x=12
答:这个水池深12尺.【点睛】此题主要考查了勾股定理的应用,在应用勾股定理解决实际问题时勾股定理与方程的结合是解决实际问题常用的方法,关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图.领会数形结合的思想的应用.三、解答题(本题共有6个小题,每小题6分,共36分)17.在平面直角坐标系中,的三个顶点的坐标分别是.
(1)画出关于x轴成轴对称的;(2)画出以点O为位似中心,位似比为1∶2.【答案】(1)如图所示为所求;见解析;(2)如图所示为所求;见解析.【解析】(1)将的各个点关于x轴的对称点描出,连接即可.(2)在同侧和对侧分别找到2OA=OA2,2OB=OB2,2OC=OC2所对应的A2,B2,C2的坐标,连接即可.【详解】(1)由题意知:的三个顶点的坐标分别是A(1,3),B(4,1),C(1,1),则关于x轴成轴对称的的坐标为A1(1,-3),B1(4,-1),C1(1,-1),连接A1C1,A1B1,B1C1得到.如图所示为所求;(2)由题意知:位似中心是原点,则分两种情况:第一种,和在同一侧则A2(2,6),B2(8,2),C2(2,2),连接各点,得.第二种,在的对侧A2(-2,-6),B2(-8,-2),C2(-2,-2),连接各点,得.综上所述:如图所示为所求;【点睛】本题主要考查了位似中心、位似比和轴对称相关知识点,正确掌握位似中心、位似比的概念及应用是解题的关键.18.解不等式组,并把它的解集在数轴上表示出来.【答案】,数轴见解析【解析】分别求出不等式组中两不等式的解集,找出解集的公共部分即可.由得:,由得:,∴不等式组的解集为:.在数轴上表示如下:【点睛】本题考查了解一元一次不等式组以及分式的化简求值,正确对分式进行通分、约分是关键.19.先化简,再求值:÷(a﹣),其中a,b满足|a﹣3|+(b﹣2)2=0.【答案】=,1【解析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,利用非负数的性质求出a与b的值,代入计算即可求出值.原式=÷=•=,∵|a﹣3|+(b﹣2)2=0,∴a﹣3=0,b﹣2=0,即a=3,b=2,则原式=1.点评:此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.20.“六•一”儿童节前,某玩具商店根据市场调查,用2500元购进一批儿童玩具,上市后很快脱销,接着又用4500元购进第二批这种玩具,所购数量是第一批数量的1.5倍,但每套进价多了10元.(1)求第一批玩具每套的进价是多少元?(2)如果这两批玩具每套售价相同,且全部售完后总利润不低于25%,那么每套售价至少是多少元?【答案】见解析【解析】(1)设第一批玩具每套的进价是x元,则第一批进的件数是:,第二批进的件数是:,再根据等量关系:第二批进的件数=第一批进的件数×1.5可得方程;(2)设每套售价是y元,利润=售价﹣进价,根据这两批玩具每套售价相同,且全部售完后总利润不低于25%,可列不等式求解.解:(1)设第一批玩具每套的进价是x元,×1.5=,x=50,经检验x=50是分式方程的解,符合题意.答:第一批玩具每套的进价是50元;(2)设每套售价是y元,×1.5=75(套).50y+75y﹣2500﹣4500≥(2500+4500)×25%,y≥70,答:如果这两批玩具每套售价相同,且全部售完后总利润不低于25%,那么每套售价至少是70元.21.已知:如图,在▱ABCD中,点O是CD的中点,连接AO并延长,交BC的延长线于点E,求证:AD=CE.【答案】见解析。【解析】只要证明△AOD≌△EOC(ASA)即可解决问题;证明:∵O是CD的中点,∴OD=CO,∵四边形ABCD是平行四边形,∴AD∥BC,∴∠D=∠OCE,在△ADO和△ECO中,∠D=∴△AOD≌△EOC(ASA),∴AD=CE.22.某家庭记录了未使用节水龙头20天的日用水量数据(单位:)和使用了节水龙头20天的日用水量数据,得到频数分布表如下:未使用节水龙头20天的日用水量频数分布表:日用水量/频数042410使用了节水龙头20天日用水量频数分布表:日用水量/频数2684(1)计算未使用节水龙头20天的日平均用水量和使用了节水龙头20天的日平均用水量;(2)估计该家庭使用节水龙头后,一年能节省多少立方米水?(一年按365天计算)【答案】(1)未使用节水龙头20天的日平均用水量为;使用了节水龙头20天的日平均用水量为;(2)估计该家庭使用节水龙头后,一年能节省水.【解析】(1)取组中值,运用加权平均数分别计算出未使用节水龙头20天的日平均用水量和使用了节水龙头20天的日平均用水量即可;(2)先计算平均一天节水量,再乘以365即可得到结果.【详解】(1)未使用节水龙头20天的日平均用水量为:使用了节水龙头20天的日平均用水量为:(2)答:估计该家庭使用节水龙头后,一年能节省水.【点睛】考查节水量的估计值的求法,考查加权平均数等基础知识,考查运算求解能力,是基础题.四、解答题(本题共4道题,其中23、24题每题8分,25、26题每题10分,共36分)23.已知:如图,AB是的直径,点为上一点,点D是上一点,连接并延长至点C,使与AE交于点F.(1)求证:是的切线;(2)若平分,求证:.【答案】(1)见解析;(2)见解析.【解析】(1)利用为直径,得出,利用得出,从而得出,进而得出结论;(2)证出即可得出结论.【详解】证明:(1)为直径,,在中,,又,,,即,,又为的直径,是的切线;(2)平分,,又,,又,,,.【点睛】本题考查了切线的判定,同弧所对的圆周角相等,三角形相似的判定和性质;证明切线有两种情况(1)有交点,作半径,证垂直;(2)无交点,作垂直,证半径.24.甲、乙两地的路程为290千米,一辆汽车早上8:00从甲地出发,匀速向乙地行驶,途中休息一段时间后.按原速继续前进,当离甲地路程为240千米时接到通知,要求中午12:00准时到达乙地.设汽车出发x小时后离甲地的路程为y千米,图中折线OCDE表示接到通知前y与x之间的函数关系.(1)根据图象可知,休息前汽车行驶的速度为千米/小时;(2)求线段DE所表示的y与x之间的函数表达式;(3)接到通知后,汽车仍按原速行驶能否准时到达?请说明理由.【分析】(1)观察图象即可得出休息前汽车行驶的速度;(2)根据题意求出点E的横坐标,再利用待定系数法解答即可;(3)求出到达乙地所行驶的时间即可解答.【解析】(1)由图象可知,休息前汽车行驶的速度为80千米/小时;故答案为:80;(2)休息后按原速继续前进行驶的时间为:(240﹣80)÷80=(小时),∴点E的坐标为(3.5,240),设线段DE所表示的y与x之间的函数表达式为y=kx+b,则:1.5k+b=803.5k+b=240,解得k=80∴线段DE所表示的y与x之间的函数表达式为80x﹣40;(3)接到通知后,汽车仍按原速行驶,则全程所需时间为:290÷80+0.5=4.125(小时),12:00﹣8:00=4(小时),4.125>4,所以接到通知后,汽车仍按原速行驶不能准时到达.25.实践操作:第一步:如图1,将矩形纸片沿过点D的直线折叠,使点A落在上的点处,得到折痕,然后把纸片展平.第二步:如图2,将图1中的矩形纸片沿过点E的直线折叠,点C恰好落在上的点处,点B落在点处,得到折痕,交于点M,交于点N,再把纸片展平.问题解决:(1)如图1,填空:四边形的形状是_____________________;(2)如图2,线段与是否相等?若相等,请给出证明;若不等,请说明理由;(3)如图2,若,求的值.【答案】(1)正方形;(2),见解析;(3)【解析】(1)有一组邻边相等且一个角为直角的平行四边形是正方形;(2)连接,由(1)问的结论可知,,又因为矩形纸片沿过点E的直线折叠,可知折叠前后对应角以及对应边相等,有,,,可以证明和全等,得到,从而有;(3)由,有;由折叠知,,可以计算出;用勾股定理计算出DF的长度,再证明得出等量关系,从而得到的值.【详解】(1)解:∵ABCD是平行四边形,∴,∴四边形是平行四边形∵矩形纸片沿过点D的直线折叠,使点A落在上的点处∴∴∵∴四边形的形状是正方形故最后答案为:四边形的形状是正方形;(2)理由如下:如图,连接,由(1)知:∵四边形是矩形,∴由折叠知:∴又,∴∴∴(3)∵,∴由折叠知:,∴∵∴设,则在中,由勾股定理得:解得:,即如图,延长交于点G,则∴∴∴∵,∴∴【点睛】(1)本问主要考查了正方形的定义,即有一组邻边相等且一个角为直角的平行四边形是正方形,其中明确折叠前后对应边、对应角相等是解题的关键;(2)本问利用了正方形的性质以及折叠前后对应边、对应角相等来证明三角形全等,再根据角相等则边相等即可做题,其中知道角相等则边相等的思想是解题的关键;(3)本问考查了全等三角形、相似三角形的性质、角相等则正切值相等以及勾股定理的应用,其中知道三角形相似则对应边成比例是解题的关键.26.如图1,直线l:y=﹣x+b与x轴交于点A(4,0),与y轴交于点B,点C是线段OA上一动点(0<AC<).以点A为圆心,AC长为半径作⊙A交x轴于另一点D,交线段AB于点E,连结OE并延长交⊙A于点F.(1)求直线l的函数表达式和tan∠BAO的值;(2)如图2,连结CE,当CE=EF时,①求证:△OCE∽△OEA;②求点E的坐标;(3)当点C在线段OA上运动时,求OE•EF的最大值.【答案】见解析【分析】(1)利用待定系数法求出b即可
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 四管管理制度
- 抢救与急救措施管理制度
- 利用导数解决不等式的恒成立问题
- 人教部编版四年级语文上册口语交际《讲历史人物故事》精美课件
- 【同步提优】部编版三语下第二单元各类阅读真题(含小古文、非连续性文本等)名师解析连载
- 福建省福州市三校联考2024年高三练习题五(全国卷)数学试题
- 2024年湖南客运资格证培训考试题答案解析
- 2024年河南客运考试应用能力试题答案解析
- 2024年重庆客运旅客急救考试答案
- 2024年河源小型客运从业资格证考试培训试题和答案
- 《果树嫁接技术》课件
- 中考英语一模作文-征集“文化自信类”写作
- 中医合理膳食
- 2024年意识形态工作专题会议记录【6篇】
- 早产儿脑出血预防
- 酒店服务品质提升方案
- 税务学习练兵(办公室条线)考试题库(含答案)
- T-SZHW 001-2024 深圳市城市管家服务管理规范(试行)
- 益母草化学成分与药理作用研究进展
- 五年级上册小数乘除口算练习400题及答案
- 中阮谱大全(24首)
评论
0/150
提交评论