北师大版初中数学九年级下册2.5.2 二次函数与一元二次方程(第2课时) 教学设计(含教学反思)_第1页
北师大版初中数学九年级下册2.5.2 二次函数与一元二次方程(第2课时) 教学设计(含教学反思)_第2页
北师大版初中数学九年级下册2.5.2 二次函数与一元二次方程(第2课时) 教学设计(含教学反思)_第3页
北师大版初中数学九年级下册2.5.2 二次函数与一元二次方程(第2课时) 教学设计(含教学反思)_第4页
北师大版初中数学九年级下册2.5.2 二次函数与一元二次方程(第2课时) 教学设计(含教学反思)_第5页
已阅读5页,还剩2页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

人教版初学数学九年级下册《2.5.2二次函数与一元二次方程(第2课时)》教学设计课题名利用二次函数解一元二次方程教学目标1、 经历探索二次函数与一元二次方程的关系的过程,体会方程与函数之间的联系。2、 经历用图象法求一元二次方程的近似根的过程,获得用图象法求方程近似根的体验。教学重点理解一元二次方程的根就是二次函数与交点的横坐标教学难点利用二次函数的图象求一元二次方程的近似根教学方法任务驱动的小组合作教学教学准备多媒体课件、三角板、计算器等教学过程一、引入新课二次函数y=ax2+bx+c(a≠0)的图象与x轴交点的横坐标就是y=0时的一元二次方程ax2+bx+c=0(a≠0)的根.我们还可以根据二次函数与x轴的交点情况,判断一元二次方程根的情况,即Δ=b2-4ac决定抛物线与x轴的交点情况:二次函数y=ax2+bx+c的图象和x轴交点一元二次方程ax2+bx+c=0的根一元二次方程ax2+bx+c=0根的判别式Δ=b2-4ac有两个交点有两个不相等的实数根b2-4ac>0有一个交点有两个相等的实数根b2-4ac=0没有交点没有实数根b2-4ac<0二、讲授新课上节课我们学习了二次函数y=ax2+bx+c(a≠0)的图象与x轴的交点坐标和一元二次方程ax2+bx+c=0(a≠0)的根的关系,懂得了二次函数图象与x轴交点的横坐标,就是y=0时的一元二次方程的根.于是,我们在不解方程的情况下,只要知道二次函数与x轴交点的横坐标即可.但是在图象上我们很难准确地求出方程的解,所以要进行估算.你能利用二次函数的图象估计一元二次方程x2+2x-10=0的根吗?(精确到0.1)x-4.1-4.2-4.3-4.4y-1.39-0.76-0.110.56x2.12.22.32.4y-1.39-0.76-0.110.56引导学生回顾画二次函数y=ax2+bx+c(a≠0)图象的步骤方法,观察估计二次函数y=x2+2x-10的图象与x轴的交点的横坐标,由图象可知,图象与x轴有两个交点,其横坐标一个在-5与-4之间,另一个在2与3之间.所以方程x2+2x-10=0的两个根一个在-5与-4之间,另一个在2与3之间.既然一个根在-5与-4之间,那这个根一定是负4点几,所以个位数就确定下来了,接着确定十分位上的数,这时可以用试一试的方法,即分别把x=-4.1,-4.2,…,-4.9代入方程进行计算,哪一个值能使等式成立(或哪一个值能使等式近似成立),则这个值就是方程的根(或近似根).从上表可知,当x取-4.4或-4.3时,对应y的值由正变负,可见在-4.4和-4.3之间一定有一个x值使得y=0,即有方程x2+2x-10=0的一个根.由于当x=-4.3时,y=-0.11比y=0.56(x=-4.4)更接近0,所以选x=-4.3.因此,方程x2+2x-10=0在-5和-4之间精确到0.1的根为x=-4.3.做一做(1)利用二次函数的图象(如图2-5-29)求一元二次方程x2+2x-13=0的近似根.图2-5-29x-4.5-4.6-4.7-4.8-4.9y-1.75-1.04-0.310.441.21x2.52.62.72.82.9y-1.75-1.04-0.310.441.21(2)你还能利用图2-5-30求一元二次方程x2+2x-10=3的近似根吗?三、课堂练习1.根据下列表格的对应值:判断方程ax2+bx+c=0(a≠0,a,b,c为常数)一个解x的范围是()A.3<x<3.23B.3.23<x<3.24C.3.24<x<3.25D.3.25<x<3.262.小颖用计算器探索方程ax2+bx+c=0的根,作出如图所示的图象,并求得一个近似根x=-3.4,则方程的另一个近似根(精确到0.1)为()A.4.4 B.3.4 C.2.4 D.1.43.已知二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,顶点坐标为(-1,-3.2),由图象可知关于x的一元二次方程ax2+bx+c=0的两个根分别是x1=1.3,x2=________.4.二次函数y=ax2+bx+c(a≠0)的图象如图所示,根据图象解答下列问题:(1)写出方程ax2+bx+c=0的两个根;(2)写出y随x的增大而减小的自变量x的取值范围;(3)若方程ax2+bx+c=k有两个不相等的实数根,求k的取值范围.5.已知二次函数y=x2-6x+8的图象(1)方程x2(2)x取什么

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论