专题22.8 实际问题与二次函数之六大题型(原卷版)_第1页
专题22.8 实际问题与二次函数之六大题型(原卷版)_第2页
专题22.8 实际问题与二次函数之六大题型(原卷版)_第3页
专题22.8 实际问题与二次函数之六大题型(原卷版)_第4页
专题22.8 实际问题与二次函数之六大题型(原卷版)_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

专题22.8实际问题与二次函数之六大题型【考点导航】目录TOC\o"1-3"\h\u【典型例题】 1【题型一拱桥问题】 1【题型二销售问题】 6【题型三投球问题】 11【题型四喷水问题】 19【题型五图形问题】 27【题型六图形运动问题】 33【典型例题】【题型一拱桥问题】例题:(2023·全国·九年级专题练习)郑州市彩虹桥新桥将于2023年9月底建成通车.新桥采用三跨连续单拱肋钢箱系杆拱桥,既保留了历史记忆,又展示出郑州的开放与创新.新桥的中跨大拱的拱肋可视为抛物线的一部分,桥面(视为水平的)与拱肋用垂直于桥面的系杆连接,测得拱肋的跨度为120米,与中点O相距30米处有一高度为27米的系杆.以所在直线为x轴,抛物线的对称轴为y轴建立如图②所示的平面直角坐标系.

(1)求抛物线的解析式;(2)正中间系杆的长度是多少米?若相邻系杆之间的间距均为3米(不考虑系杆的粗细),是否存在一根系杆的长度恰好是长度的?请说明理由.【变式训练】1.(2023秋·山西晋城·九年级校考期末)如图,有一个横截面为抛物线形状的隧道,隧道底部宽为,拱顶内高.把截面图形放在如图所示的平面直角坐标系中(原点O是的中点).

(1)求这条抛物线所对应的函数表达式;(2)如果该隧道设计为车辆双向通行,规定车辆必须在中心黄线两侧行驶,那么一辆宽,高的大型货运卡车是否可以通过?为什么?2.(2023·河南郑州·校考三模)一座抛物线型拱桥如图所示,当桥下水面宽度为20米时,拱顶点O距离水面的高度为4米.如图,以点O为坐标原点,以桥面所在直线为x轴建立平面直角坐标系.

(1)求抛物线的解析式;(2)汛期水位上涨,一艘宽为5米的小船装满物资,露出水面部分的高度为3米(横截面可看作是长为5米,宽为3米的矩形),若它恰好能从这座拱桥下通过,求此时水面的宽度(结果保留根号).3.(2023·陕西西安·陕西师大附中校考模拟预测)某公司生产A型活动板房的成本是每个3500元.图1表示A型活动板房的一面墙,它由长方形和抛物线构成,长方形的长,宽,抛物线的最高点E到的距离为.

(1)按图1中所示的平面直角坐标系,求该抛物线的函数表达式;(2)现将A型活动板房改造成为B型活动板房.如图2,在抛物线与之间的区域内加装一扇长方形窗户,点G、M在上,点F、N在抛物线上,窗户的成本为150元/.已知,求每个B型活动板房的成本.(每个B型活动板房的成本=每个A型活动板房的成本+一扇窗户的成本)【题型二销售问题】例题:(2023秋·河北唐山·九年级统考期末)某超市以30元/千克的价格收购一批农产品进行销售,为了得到日销售量(千克)与销售价格(元/千克)之间的关系、经过市场调查获得部分数据如下表:销售价格(元/千克)3035404550日销售量(千克)604530150(1)请直接写出与之间的函数关系式______;(2)超市应该如何确定这批农产品的销售价格,才能使日销售利润最大?(3)超市每销售1千克这种农产品需支出元()的相关费用,当时,农经公司的日获利的最大值为243元,求的值.【变式训练】1.(2023秋·河南驻马店·九年级统考期末)“阳光玫瑰葡萄”品种是近几年来广受各地消费者青睐的优质新品种,在云南省广泛种植.长沙市某品牌水果经销商计划在2023年五一期间进行商业促销活动,经过调查往年的统计数据发现,云南省批发“阳光玫瑰葡萄”的最低价格为每斤15元.若按每斤30元的价格到市区销售,平均每天可售出60斤,若每斤“阳光玫瑰葡萄”的售价每降低1元,那么平均每天的销售量会增加10斤,为了尽快减少库存,该水果商决定降价销售.(1)若降价2元,则每天的销售利润是多少元?(2)若该经销商计划销售“阳光玫瑰葡萄”每天盈利1100元,那么每斤“阳光玫瑰葡萄”的售价应降低多少元?(其他成本忽略不计)(3)将商品的销售单价定为多少元时,商场每天销售该商品获得的利润w最大?最大利润是多少元?2.(2023秋·湖南湘西·九年级统考期末)某农户生产经销一种地方特产.已知这种产品的成本价为每千克20元,市场调查发现,该产品每天的销售量y(千克)与销售价x(元/千克)有如下关系:.设这种产品每天的销售利润为w元(1)求w与x之间的函数关系式;(2)该产品销售价定为每千克多少元时,每天的销售利润最大?最大利润是多少元?(3)如果物价部门规定这种产品的销售价不得高于每千克30元,该农户想要每天获得150元的销售利润,销售价应定为每千克多少元?3.(2023春·山东东营·八年级东营市实验中学校考期中)2022年北京冬奥会期间,吉祥物“冰墩墩”和“雪容融”受到人们的广泛欢迎.某网店以每套96元的价格购进了一批冰墩墩和雪容融,由于销售火爆,销售单价经过两次调整,从每套150元上涨到每套216元,此时每天可售出16套冰墩墩和雪容融.

(1)若销售单价每次上涨的百分率相同,求每次上涨的百分率;(2)预计冬奥会闭幕后需求会有所下降,该网店需尽快将这批冰墩墩和雪容融售出,因此决定降价出售.经过市场调查发现:销售单价每降低10元,每天可多卖出两套当销售单价降低m元时,每天的利润为W.求当m为何值时利润最大最大利润是多少?【题型三投球问题】例题:(2023春·山东东营·八年级东营市实验中学校考期中)掷实心球是中考体育考试项目之一.如图1是一名男生掷实心球情境,实心球行进路线是一条抛物线,行进高度与水平距离之间的函数关系如图2所示.掷出时,起点处高度为.当水平距离为时,实心球行进至最高点处.

(1)求y关于x的函数表达式;(2)根据中考体育考试评分标准(男生版),投掷过程中,实心球从起点到落地点的水平距离大于等于时,即可得满分10分.该男生在此项考试中能否得满分,请说明理由.【变式训练】1.(2023·河南安阳·统考一模)小红为了研究抛出的弹跳球落在斜面上反弹后的距离.如图,用计算机编程模拟显示,当弹跳球以某种特定的角度和初速度从坐标为的点处抛出后,弹跳球的运动轨迹是抛物线,其最高点的坐标为.弹跳球落到倾斜角为的斜面上反弹后,弹跳球的运动轨迹是抛物线,且开口大小和方向均不变,但最大高度只是抛物线的.

(1)求抛物线的解析式;(2)若斜面被坐标平面截得的截图与轴的交点的坐标为,求抛物线的对称轴.2.(2023·河北·统考中考真题)嘉嘉和淇淇在玩沙包游戏.某同学借此情境编制了一道数学题,请解答这道题.如图,在平面直角坐标系中,一个单位长度代表1m长.嘉嘉在点处将沙包(看成点)抛出,并运动路线为抛物线的一部分,淇淇恰在点处接住,然后跳起将沙包回传,其运动路线为抛物线的一部分.

(1)写出的最高点坐标,并求a,c的值;(2)若嘉嘉在x轴上方的高度上,且到点A水平距离不超过的范围内可以接到沙包,求符合条件的n的整数值.3.(2023·内蒙古赤峰·统考中考真题)乒乓球被誉为中国国球.2023年的世界乒乓球标赛中,中国队包揽了五个项目的冠军,成绩的取得与平时的刻苦训练和精准的技术分析是分不开的.如图,是乒乓球台的截面示意图,一位运动员从球台边缘正上方以击球高度为的高度,将乒乓球向正前方击打到对面球台,乒乓球的运行路线近似是抛物线的一部分.乒乓球到球台的竖直高度记为(单位:),乒乓球运行的水平距离记为(单位:).测得如下数据:水平距离x/竖直高度y/(1)在平面直角坐标系中,描出表格中各组数值所对应的点,并画出表示乒乓球运行轨迹形状的大致图象;

(2)①当乒乓球到达最高点时,与球台之间的距离是__________,当乒乓球落在对面球台上时,到起始点的水平距离是__________;②求满足条件的抛物线解析式;(3)技术分析:如果只上下调整击球高度,乒乓球的运行轨迹形状不变,那么为了确保乒乓球既能过网,又能落在对面球台上,需要计算出的取值范围,以利于有针对性的训练.如图②.乒乓球台长为274,球网高为15.25.现在已经计算出乒乓球恰好过网的击球离度的值约为1.27.请你计算出乒乓球恰好落在对面球台边缘点B处时,击球高度的值(乒乓球大小忽略不计).4.(2023·河南信阳·校考三模)实心球是中考体育项目之一.在掷实心球时,实心球被掷出后的运动路线可以看作是抛物线的一部分,已知小军在一次掷实心球训练中,第一次投掷时出手点距地面1.8m,实心球运动至最高点时距地面3.4m,距出手点的水平距离为4m.设实心球掷出后距地面的竖直高度为y(m),实心球距出手点的水平距离为x(m).如图,以水平方向为x轴,出手点所在竖直方向为y轴建立平面直角坐标系.

(1)求第一次掷实心球时运动路线所在抛物线的表达式.(2)若实心球投掷成绩(即出手点与着陆点的水平距离)达到12.4m为满分,请判断小军第一次投掷实心球能否得满分.(3)第二次投掷时,实心球运动的竖直高度y与水平距离x近似满足函数关系.记小军第一次投掷时出手点与着陆点的水平距离为,第二次投掷时出手点与着陆点的水平距离为,则______(填“>”“<”“=”).【题型四喷水问题】例题:(2023·陕西西安·西安市庆安初级中学校联考模拟预测)某公司为城市广场上一雕塑安装喷水装置.喷水口位于雕塑的顶端点B处,距离地面,喷出的水柱轨迹呈抛物线型.据此建立如图的平面直角坐标系.若喷出的水柱轨迹上,任意一点与支柱的水平距离x(单位:)与广场地面的垂直高度为y(单位:)满足关系式,且点在抛物线上

(1)求该抛物线的表达式;(2)求水柱落地点与雕塑的水平距离;(3)为实现动态喷水效果,广场管理处决定对喷水设施做如下设计改进:新喷水轨迹形成的抛物线形为,把水柱喷水的半径(动态喷水时,点C到的距离)控制在7到14之间,请探究改建后喷水池水柱的最大高度【变式训练】1.(2023·甘肃兰州·统考中考真题)一名运动员在高的跳台进行跳水,身体(看成一点)在空中的运动轨迹是一条抛物线,运动员离水面的高度与离起跳点A的水平距离之间的函数关系如图所示,运动员离起跳点A的水平距离为时达到最高点,当运动员离起跳点A的水平距离为时离水面的距离为.

(1)求y关于x的函数表达式;(2)求运动员从起跳点到入水点的水平距离的长.2.(2023·山东临沂·统考一模)如图,一灌溉车正为绿化带浇水,喷水口离地竖直高度为米如图,可以把灌溉车喷出水的上、下边缘抽象为平面直角坐标系中两条抛物线的部分图象;把绿化带横截面抽象为矩形,其水平宽度米,竖直高度米,下边缘抛物线是由上边缘抛物线向左平移得到,上边缘抛物线最高点离喷水口的水平距离为米,高出喷水口米,灌溉车到绿化带的距离为米.(1)求上边缘抛物线的函数解析式,并求喷出水的最大射程;(2)求下边缘抛物线与轴交点的坐标;(3)要使灌溉车行驶时喷出的水能浇灌到整个绿化带,求的取值范围.3.(2023·江西抚州·校联考三模)如图①,有一移动灌溉装置喷出水柱的路径可近似地看作一条抛物线,该灌溉装置的喷水头到水平地面的距离为1米,喷出的抛物线形水柱对称轴为直线.用该灌溉装置灌溉一坡地草坪,其水柱的高度y(单位:米)与水柱落地处距离喷水头的距离x(单位:米)之间的函数关系式为,其图像如图②所示.已知坡地所在直线经过点.

(1)的值为______;(2)若,求水柱与坡面之间的最大铅直高度;(3)若点B横坐标为18,水柱能超过点B,则a的取值范围为______;(4)若时,到喷水头水平距离为16米的A处有一棵新种的银杏树需要被灌溉,园艺工人将灌溉装置水平向后移动4米,试判断灌溉装置能否灌溉到这棵树,并说明理由.【题型五图形问题】例题:(2023·全国·九年级专题练习)2023年南宁市公共资源交易中心明确提出将五象站铁路枢纽接入地铁4号线.目前4号线剩余的东段(五象火车站-龙岗站)已经在建设中,施工方决定对终点站龙岗站施工区域中的一条特殊路段进行围挡施工,先沿着路边砌了一堵长的砖墙,然后打算用长的铁皮围栏靠着墙围成中间隔有一道铁皮围栏(平行于)的长方形施工区域.

(1)设施工区域的一边为,施工区域的面积为.请求出S与x的函数关系式,并直接写出自变量x的取值范围;(2)当围成的施工区域面积为时,的长是多少?(3)该特殊路段围挡区域的施工成本为400元/,项目方打算拨款120000元用于施工,请你通过计算判断项目方的拨款能否够用.【变式训练】1.(2023春·浙江宁波·八年级校联考期中)某景区要建一个游乐场(如图所示),其中分别靠现有墙(墙长为27米,墙足够长),其余用篱笆围成.篱笆将游乐场隔成等腰直角和长方形两部分,并在三处各留2米宽的大门.已知篱笆总长为54米.设的长为x米.(1)则的长为米(用含x的代数式表达);(2)当多长时,游乐场的面积为320平方米?(3)直接写出当为多少米时,游乐场的面积达到最大,最大值为多少平方米?2.(2023·广东深圳·统考中考真题)蔬菜大棚是一种具有出色的保温性能的框架覆膜结构,它出现使得人们可以吃到反季节蔬菜.一般蔬菜大棚使用竹结构或者钢结构的骨架,上面覆上一层或多层保温塑料膜,这样就形成了一个温室空间.如图,某个温室大棚的横截面可以看作矩形和抛物线构成,其中,,取中点O,过点O作线段的垂直平分线交抛物线于点E,若以O点为原点,所在直线为x轴,为y轴建立如图所示平面直角坐标系.请回答下列问题:(1)如图,抛物线的顶点,求抛物线的解析式;

(2)如图,为了保证蔬菜大棚的通风性

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论