备战2023年中考数学一轮复习专项训练专题01角平分线四大模型在三角形中的应用(能力提升)_第1页
备战2023年中考数学一轮复习专项训练专题01角平分线四大模型在三角形中的应用(能力提升)_第2页
备战2023年中考数学一轮复习专项训练专题01角平分线四大模型在三角形中的应用(能力提升)_第3页
备战2023年中考数学一轮复习专项训练专题01角平分线四大模型在三角形中的应用(能力提升)_第4页
备战2023年中考数学一轮复习专项训练专题01角平分线四大模型在三角形中的应用(能力提升)_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

专题01角平分线四大模型在三角形中的应用(能力提升)1.如图:在四边形ABCD中,BC>DA,AD=DC,BD平分∠ABC,DH⊥BC于H,求证:(1)∠DAB+∠C=180°(2)BH=(AB+BC)【解答】证明:(1)过D作DE⊥AB,交BA延长线于E,如图所示:∵BD平分∠ABC,DH⊥BC,∴DH=DE,在Rt△ADE和Rt△CDH中,,∴Rt△ADE≌Rt△CDH(HL),∴∠C=∠DAE,∵∠DAB+∠DAE=180°,∴∠DAB+∠C=180°;(2)在Rt△BDE和Rt△BDH中,,∴Rt△BDE≌Rt△BDH(HL),∴BE=BH,∵Rt△ADE≌Rt△CDH,∴AE=CH,∴AB+BC=AB+BH+CH=BE+BH=2BH,∴BH=(AB+BC).2.如图,AD∥BC,∠D=90°,∠CPB=30°,∠DAB的角平分线与∠CBA的角平分线相交于点P,且D,P,C在同一条直线上.(1)求∠PAD的度数;(2)求证:P是线段CD的中点.【解答】(1)解:∵AD∥BC,∴∠C=180°﹣∠D=180°﹣90°=90°,∵∠CPB=30°,∴∠PBC=90°﹣∠B=60°,∵PB平分∠ABC,∴∠ABC=2∠PBC=120°,∵AD∥BC,∴∠DAB+∠ABC=180°,∴∠DAB=180°﹣120°=60°,∵AP平分∠DAB,∴∠PAD=∠DAB=30°;(2)证明:过P点作PE⊥AB于E点,如图,∵AP平分∠DAB,PD⊥AD,PE⊥AB,∴PE=PD,∵BP平分∠ABC,PC⊥BC,PE⊥AB,∴PE=PC,∴PD=PC,∴P是线段CD的中点.3.如图,梯形ABCD中,AD∥BC,E是CD的中点,AE平分∠BAD,AE⊥BE.(1)求证:BE平分∠ABC;(2)求证:AD+BC=AB;(3)若S△ABE=4,求梯形ABCD的面积.【解答】(1)证明:延长AE交BC的延长线于M,如图所示:∵AD∥BC,∴∠M=∠DAE,∵AE平分∠BAD,∴∠DAE=∠BAE,∴∠BAE=∠M,∴AB=MB,∵AE⊥BE,∴∠ABE=∠CBE,∴BE平分∠ABC;(2)证明:∵AB=MB,BE⊥AE,∴AE=ME,∵E是CD的中点,∴DE=CE,在△ADE和△MCE中,,∴△ADE≌△MCE(SAS),∴AD=MC,∴AD+BC=MC+BC=MB=AB;(3)解:∵AB=MB,AE=ME,∴△MBE的面积=△ABE的面积=4,∴△ABM的面积=2×4=8,∵△ADE≌△MCE,∴△ADE的面积=△MCE的面积,∴梯形ABCD的面积=△ABM的面积=8.4.【问题提出】在△ABC中,∠ACB=2∠B,AD为∠BAC的角平分线,探究线段AB,AC,CD的数量关系.【问题解决】如图1,当∠ACB=90°,过点D作DE⊥AB,垂足为E,易得AB=AC+CD;由此,如图2,当∠ACB≠90°时,猜想线段AB,AC,CD有怎样的数量关系?给出证明.【方法迁移】如图3,当∠ACB≠90°,AD为△ABC的外角平分线时,探究线段AB,AC,CD又有怎样的数量关系?直接写出结论,不证明.【解答】解:【问题解决】:如图1中,当∠ACB=90°时,∵AD为∠BAC的角平分线,∠ACB=90°,DE⊥AB,∴DC=DE,∵∠ACB=2∠B,∠ACB=90°,∴∠B=45°,∵DE⊥AB,∴DE=BE,在△AED和△ACD中,,∴△AED≌△ACD(AAS),∴AE=AC,∴AB=AE+BE=AC+CD;当∠ACB≠90°时,结论:AB=CD+AC,理由:如图2,在AB上截取AG=AC,连接DG,∵AD为∠BAC的平分线,∴∠GAD=∠CAD,在△ADG和△ADC中,,∴△ADG≌△ADC(SAS),∴CD=DG,∠AGD=∠ACB,∵∠ACB=2∠B,∴∠AGD=2∠B,∵∠AGD=∠B+∠GDB,∴∠B=∠GDB,∴BG=DG=DC∴AB=BG+AG=CD+AC;【方法迁移】结论:AB=CD﹣AC,理由:如图3.在AF上截取AH=AC,连接DH,∵AD为∠FAC的平分线,∴∠HAD=∠CAD,在△ADH和△ACD中,,∴△ADH≌△ACD(SAS),∴CD=HD,∠AHD=∠ACD,即∠ACB=∠FHD,∵∠ACB=2∠B,∴∠FHD=2∠B,∵∠FHD=∠B+∠HDB,∴∠B=∠HDB,∴BH=DH=DC,∴AB=BH﹣AH=CD﹣AC.5.已知:如图,在Rt△ABC中,∠A=90°,AB=AC,点D在BC上,点E与点A在BC的同侧,且∠CED=90°,∠B=2∠EDC.(1)求证:∠FDC=∠ECF;(2)若CE=1,求DF的长.【解答】解:∵∠A=90°,AB=AC,∴△ABC为等腰直角三角形,∴∠B=∠ACB=45°,∵∠B=2∠EDC,∴∠FDC=45°×=22.5°,∵∠CED=90°,∴∠∠DCE=90°﹣∠FDC=90°﹣67.5°=22.5°,∴∠FDC=∠ECF;(2)如图,延长CE到G,使EG=CE,连接DG交AC于H,∵∠CED=90°,∴∠GED=90°,∴∠CED=∠GED,在△GED和△CED中,,∴△GED≌△CED(SAS),∴GFDE=∠CDE,∵∠DFH=∠CFE,∴∠DHF=∠CEF=90°,∵∠ACB=45°,∴∠HDC=45°,∴∠HDC=∠HCD,∴DH=CH,在△DHF和△CHG中,,∴△DHF≌△CHG(ASA),∴DF=CG,∵EG=CE,∴CG=2CE,∴DF=2CE,∵CE=1,∴DF=2.6.如图,已知在△ABC中,∠BAC=90°,AB=AC,BD平分∠ABC,CE⊥BD交BD的延长线于点E.求证:CE=BD.【解答】证明:如图,延长CE,BA交于点F.∵CE⊥BD,∠BAC=90°,∴∠BAD=∠CAF=∠BEC=90°.又∵∠ADB=∠EDC,∴∠ABD=∠ACF.在△ABD与△ACF中,∴△ABD≌△ACF(ASA).∴BD=CF.∵BD平分∠ABC,∴∠CBE=∠FBE.在△BCE与△BFE中,∴△BCE≌△BFE(ASA).∴CE=FE,即CE=CF.∴CE=BD.7.如图,在△ABC中,∠CAB=90°,D是斜边BC上的中点,E、F分别是AB、AC边上的点,且DE⊥DF.(1)若AB=AC,BE+CF=4,求四边形AEDF的面积.(2)求证:BE2+CF2=EF2.【解答】(1)解:连接AD,如图1,∵在Rt△ABC中,AB=AC,AD为BC边的中线,∴∠DAC=∠BAD=∠C=45°,AD⊥BC,AD=DC,又∵DE⊥DF,AD⊥DC,∴∠EDA+∠ADF=∠CDF+∠FDA=90°,∴∠EDA=∠CDF,在△AED与△CFD中,,∴△AED≌△CFD(ASA).∴AE=CF,∵BE+CF=4,∴AB=BE+AE=4.所以S四边形AFDE=S△AFD+S△AED=S△AFD+S△CFD=S△ADC=S△ABC=×AB2=×42=4.(2)证明:延长ED至点G,使得DG=DE,连接FG,CG,如图2,∵DE=DG,DF⊥DE,∴DF垂直平分DE,∴EF=FG,∵D是BC中点,∴BD=CD,在△BDE和△CDG中,,∴△BDE≌△CDG(SAS),∴BE=CG,∠DCG=∠DBE,∵∠ACB+∠DBE=90°,∴∠ACB+∠DCG=90°,即∠FCG=90°,∵CG2+CF2=FG2,∴BE2+CF2=EF2.8.(2020春•南岸区期末)在∠MAN内有一点D,过点D分别作DB⊥AM,DC⊥AN,垂足分别为B,C.且BD=CD,点E,F分别在边AM和AN上.(1)如图1,若∠BED=∠CFD,请说明DE=DF;(2)如图2,若∠BDC=120°,∠EDF=60°,猜想EF,BE,CF具有的数量关系,并说明你的结论成立的理由.【答案】(1)略(2)略【解答】解:(1)∵DB⊥AM,DC⊥AN,∴∠DBE=∠DCF=90°,在△BDE和△CDF中,∵∴△BDE≌△CDF(AAS).∴DE=DF;(2)EF=FC+BE,理由:过点D作∠CDG=∠BDE,交AN于点G,在△BDE和△CDG中,,∴△BDE≌△CDG(ASA),∴DE=DG,BE=CG.∵∠BDC=120°,∠EDF=60°,∴∠BDE+∠CDF=60°.∴∠FDG=∠CDG+∠CDF=60°,∴∠EDF=∠GDF.在△EDF和△GDF中,,∴△EDF≌△GDF(SAS).∴EF=GF,∴EF=FC+CG=FC+BE.9.(2020秋•渑池县期末)(1)如图①,在Rt△ABC中,∠C=90°,∠B=45°,AD平分∠BAC,交BC于点D.如果作辅助线DE⊥AB于点E,则可以得到AC、CD、AB三条线段之间的数量关系为;(2)如图,△ABC中,∠C=2∠B,AD平分∠BAC,交BC于点D.(1)中的结论是否仍然成立?若不成立,试说明理由;若成立,请证明.【答案】(1)AB=AC+CD(2)略【解答】解:(1)如图1,∵AD平分∠BAC,∴∠CAD=∠EAD,在△CAD和△EAD中,∴△CAD≌△EAD(AAS),∴CD=DE,AC=AE,∵∠B=45°,∠DEB=90°,∴DE=EB,∴DC=BE,∴AE+BE=AC+DC=AB;故答案为:AB=AC+CD.(2)成立.证明:如图2,在AB上截取AE=AC,连接DE.∵在△ACD和△AED中,∴△ACD≌△AED(SAS),∴CD=ED,∠C=∠AED,又∵∠C=2∠B,∴∠AED=2∠B,又∵∠AED=∠B+∠EDB,∴2∠B=∠B+∠EDB,∴∠B=∠EDB,∴ED=EB∵AB=AE+EB,ED=EB=CD,AE=AC,∴AB=AC+CD.10.(百色期末)如图,△ABC中,AD平分∠BAC,DG⊥BC且平分BC,DE⊥AB于E,DF⊥AC于F.(1)说明BE=CF的理由;(2)如果AB=5,AC=3,求AE、BE的长.【答案】(1)略(2)BE=1,AE=4.【解答】(1)证明:连接BD,CD,∵AD平分∠BAC,DE⊥AB,DF⊥AC,∴DE=DF,∠BED=∠CFD=90°,∵DG⊥BC且平分BC,∴BD=CD,在Rt△BED与Rt△CFD中,,∴Rt△BED≌Rt△CFD(HL),∴BE=CF;(2)解:在△AED和△AFD中,,∴△AED≌△AFD(AAS),∴AE=AF,设BE=x,则CF=x,∵AB=5,AC=3,AE=AB﹣BE,AF=AC+CF,∴5﹣x=3+x,解得:x=1,∴BE=1,AE=AB﹣BE=5﹣1=4.11.(广州期中)如图,在△ABC中,∠ABC的平分线与∠ACB的外角的平分线相交于点D.(1)求证:点D到三边AB、BC、CA所在直线的距离相等;(2)连接AD,若∠BDC=40°,求∠DAC的度数.【答案】(1)略(2)∠DAC=50°【解答】(1)证明:如图,过点D作三边AB、BC、CA所在直线的垂线,垂足分别是Q、M、N.则垂线段DQ、DM、DN,即为D点到三边AB、BC、CA所在直线的距离.∵D是∠ABC的平分线BD上的一点,∴DM=DQ.∵D是∠ACM的平分线CD上的一点,∴DM=DN.∴DQ=DM=DN.∴D点到三边AB、BC、CA所在直线的距离相等.(2)解:连接AD,∵∠DCG是△BCD的外角,∴∠DCG=∠DBC+∠BDC,∵∠ACG△ABC的外角∴∠ACG=∠ABC+∠BAC,∴2∠BDC=∠BAC,∵∠BDC=40°,∴∠BAC=80°,∠EAC=100°,由(1)可得DQ=DN,∴AD平分∠EAC,∴∠DAC=EAC=50°.12.(2021秋•雨花区期末)如图,△ABC中,∠ABC=60°,AD、CE分别平分∠BAC、∠ACB,AD、CE相交于点P.(1)求∠APC的度数;(2)若AE=3,CD=4,求线段AC的长.【解答】解:(1)∵∠ABC=60°,∴∠BAC+∠BCA=120°,∵AD、CE分别平分∠BAC、∠ACB,∴∠PAC+∠PCA=(∠BAC+∠BCA)=60°,∴∠APC=120°.(2)如图,在AC上截取AF=AE,连接PF,∵AD平分∠BAC,∴∠BAD=∠CAD,在△APE和△APF中,,∴△APE≌△APF(SAS),∴∠APE=∠APF,∵∠APC=120°,∴∠APE=60°,∴∠APF=∠CPD=60°=∠CPF,∵CE平分∠ACB,∴∠ACP=∠BCP,在△CPF和△CPD中,,∴△CPF≌△CPD(ASA),∴CF=CD,∴AC=AF+CF=AE+CD=3+4=7.13.(2020秋•南开区校级期中)如图1,在平面直角坐标系中,直线AB分别交x轴、y轴于A(a,0)、B(0,b)两点,且a,b满足(a﹣b)2+|a﹣4t|=0,且t>0,t是常数.直线BD平分∠OBA,交x轴于D点.(1)若AB的中点为M,连接OM交BD于N,求证:ON=OD;(2)如图2,过点A作AE⊥BD,垂足为E,猜想AE与BD间的数量关系,并证明你的猜想;(3)如图3,在x轴上有一个动点P(在A点的右侧),连接PB,并作等腰Rt△BPF,其中∠BPF=90°,连接FA并延长交y轴于G点,当P点在运动时,OG的长是否发生改变?若改变,请求出它的变化范围;若不变,求出它的长度.【解答】(1)证明:∵直线AB分别交x轴、y轴于A(a,0)、B(0,b)两点,且a,b满足(a﹣b)2+|a﹣4t|=0,且t>0,∴a=b=4t,∴点A、B的坐标是A(4t,0),

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论