




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
MartinWilsonLecture1slide1SuperconductingmagnetsforAcceleratorsWhoneedssuperconductivityanyway?
AbolishOhm’sLaw!nopowerconsumption (althoughdoneedrefrigerationpower)highcurrentdensityampereturnsarecheap,sowedon’tneediron (althoughoftenuseitforshielding)Consequenceslowerpowerbillshighermagneticfieldsmeanreducedbendradius
smallerrings
reducedcapitalcost
newtechnicalpossibilities (egmuoncollider)higherquadrupolegradients
higherluminosityMartinWilsonLecture1slide2SuperconductingmagnetsforAccelerators
PlanoftheCourse
MartinNWilson(RutherfordLab
OxfordInstruments
consultant)
1Introductionwheretofindmoreinformationpropertiesofsuperconductors,criticalfield,criticaltemperature&criticalcurrentdensityhightemperaturesuperconductorsHTSmagneticfieldsandhowtocreatethemloadlinesandtemperaturemargindegradationandtraining2Controllingtraining&finefilamentscausesoftrainingminimumpropagatingzonesMPZandminimumquenchenergyMQEscreeningcurrentsandthecriticalstatemodelfluxjumpingmagnetizationandfielderrors3Cables&quenchingwhycables?couplingincablesfielderrorscausedbycablemagnetizationthequenchprocess,internalandexternalvoltagesdecaytimesandtemperaturerisepropagationofthenormalzone,quenchprotectionschemes,protectionofLHC4Manufacturingandtestingconductorandcablemanufacturemagnetmanufacture
measurementofcriticalcurrentandmagnetizationcurrentleadsandpersistentcurrentswitchingsomeexamplesofsuperconductingacceleratorsMartinWilsonLecture1slide3SomeusefulreferencesSuperconductingMagnetsSuperconductingAcceleratorMagnets:KHMess,PSchmuser,SWolf.,pubWorldScientific,(1996)ISBN981-02-2790-6HighFieldSuperconductingMagnets:FMAsner,pubOxfordUniversityPress(1999)ISBN0198517645CaseStudiesinSuperconductingMagnets:YIwasa,pubPlenumPress,NewYork(1994),ISBN0-306-44881-5.SuperconductingMagnets:MNWilson,pubOxfordUniversityPress(1983)ISBN0-019-854805-2ProcAppliedSuperconductivityConference:pubasIEEETransAppliedSuperconductivity,Mar93to99,andasIEEETransMagneticsMar75to91HandbookofAppliedSuperconductivityedBSeeber,pubUKInstitutePhysics1998CryogenicsHeliumCryogenicsVanSciverSW,pubPlenum86ISBN0-0306-42335-9CryogenicEngineering,HandsBA,pubAcademicPress86ISBN0-012-322991-XCryogenics:publishedmonthlybyButterworthsCryogenie:SesApplicationsenSupraconductivite,pubIIR177BoulevardMalesherbesF5017ParisFranceMaterialsMechanicalMaterialsatLowTemperature:EdRPReed&AFClark,pubAm.Soc.Metals1983.ISBN0-87170-146-4HandbookonMaterialsforSuperconductingMachinerypubBatelleColumbusLaboratories1977.Nonmetallicmaterialsandcompositesatlowtemperatures:EdAFClark,RPReed,GHartwigpubPlenumNonmetallicmaterialsandcompositesatlowtemperatures2,EdGHartwig,DEvans,pubPlenum1982AusteniticSteelsatlowtemperaturesEditorsR.P.ReedandT.Horiuchi,pubPlenum1983SuperconductingMaterialsSuperconductorScienceandTechnology,publishedmonthlybyInstituteofPhysics(UK).SuperconductivityofmetalsandCuprates,JRWaldram,InstituteofPhysicsPublishing(1996)ISBN0852743378HighTemperatureSuperconductors:ProcessingandScience,ABourdillonandNXTanBourdillon,AcademicPress,ISBN0121176800MartinWilsonLecture1slide4MaterialsdatawebsitesCryodataSoftwareProducts
GASPAK propertiesofpurefluidsfromthetriplepointtohightemperatures.
HEPAKpropertiesofheliumincludingsuperfluidabove0.8K,upto1500K.
STEAMPAK
propertiesofwaterfromthetriplepointto2000Kand200MPa.
METALPAK,CPPACK,EXPAK referencepropertiesofmetalsandothersolids,1-300K.
CRYOCOMP propertiesandthermaldesigncalculationsforsolidmaterials,1-300K.
SUPERMAGNET fouruniqueengineeringdesigncodesforsuperconductingmagnetsystems.
KRYOMnumericalmodellingcalculationsonradiation-shieldedcryogenicenclosures.Cryogenicproperties(1-300K)ofmanysolids,includingthermalconductivity,specificheat,andthermalexpansion,havebeenempiricallyfittedandtheequationparametersareavailablefreeonthewebat.Plotsandautomateddata-look-upusingtheNISTequationsareavailableonthewebforafeefrom.Otherfeewebsitesthatusetheirownfittingequationsforanumberofcryogenicmaterialpropertiesinclude:(cryogenicpropertiesofabout100materials), and(temperaturedependentpropertiesofabout1000materials,manyatcryogenictemperatures).Commerciallysuppliedroom-temperaturedataareavailablefreeonlineforabout10to20propertiesofabout24,000materialsat.thankstoJackEkinofNISTforthisinformationMartinWilsonLecture1slide5ThecriticalsurfaceofniobiumtitaniumNiobiumtitaniumNbTiisthestandard‘workhorse’ofthesuperconductingmagnetbusinessitisaductilealloypictureshowsthecriticalsurface,whichistheboundarybetweensuperconductivityandnormalresistivityin3dimensionalspacesuperconductivityprevailseverywherebelowthesurface,resistanceeverywhereaboveitwedefineanuppercriticalfield
Bc2
(atzerotemperatureandcurrent)
andcriticaltemperatureqc(atzerofieldandcurrent)whicharecharacteristicofthealloycompositioncriticalcurrentdensitydependsonprocessingField(Tesla)Temperature(K)Currentdensity(kA.mm-2)MartinWilsonLecture1slide6Thecriticallineat4.2Kbecausemagnetsusuallyworkinboilingliquidhelium,thecriticalsurfaceisoftenrepresentedbyacurveofcurrentversusfieldat4.2KniobiumtinNb3SnhasamuchhigherperformanceintermsofcriticalcurrentfieldandtemperaturethanNbTibutitisbrittleintermetalliccompoundwithpoormechanicalpropertiesnotethatboththefieldandcurrentdensityofbothsuperconductorsarewayabovethecapabilityofconventionalelectromagnetsCriticalcurrentdensityA.mm-210102103104Magneticfield(Tesla)Nb3SnNbTiConventionalironyokeelectromagnetsMartinWilsonLecture1slide7Filamentarycompositewiresforreasonsthatwillbedescribedlater,superconductingmaterialsarealwaysusedincombinationwithagoodnormalconductorsuchascoppertoensureintimatemixingbetweenthetwo,thesuperconductorismadeintheformoffinefilamentsembeddedinamatrixofcoppertypicaldimensionsare:wirediameter0.3-1.0mmfilamentdiameter10-60mmforelectromagneticreasons,thecompositewiresaretwistedsothatthefilamentslooklikearope(seeLecture3onfilamentaryconductorsandcables)MartinWilsonLecture1slide8Criticalproperties:temperatureandfield1wherekBisBoltzmann'sconstantandD(0)istheenergygap(bindingenergyofCooperpairs)ofatq=0CriticalField
Bc:Type1superconductorsshowtheMeissnereffect.FieldisexpelledwhensamplebecomessuperconductingItcostsenergytokeepthefieldout.Criticalfieldhappenswhenthecondensationenergyofthesuperconductingstateisjustequaltotheenergypenaltyofkeepingthefieldout.CriticalTemperature
qcwhereGistheGibbsfreeenergyofthenormal/superconductingstate.BCStheorysayswhereNF
isthedensityofstatesattheFermisurfaceofmetalinnormalstate-calculateitfrom:wheregisSommerfeldcoefficientofelectronicspecificheatMartinWilsonLecture1slide9Criticalproperties:temperatureandfield2combiningthepreviousequations:'thermodynamiccriticalfield'
Bc
solikethecriticaltemperature,Bcisdefinedbythe'chemistry'typicallyforNbTig~103Jm-3K-1
soifq=10KBc=0.24TConclusion:
Type1superconductorsareuselessformagnets!Notehowever:Meissnereffectisnottotal,themagneticfieldactuallypenetratesasmalldistanceltheLondonPenetrationDepth.Anothercharacteristicdistanceisthecoherencelengthz-theminimumdistanceoverwhichtheelectronicstatecanchangefromsuperconductingtonormalMartinWilsonLecture1slide10Criticalproperties:type2superconductorsTheoryofGinsburg,Landau,AbrikosovandGorkovGLAG definestheratiok=l/xIfk>1/
2themagneticfieldcanpenetrateintheformofdiscretefluxoids-Type2asinglefluxoidenclosesfluxwhereh=Planck'sconstant, e=electronicchargeuppercriticalfieldinthe‘dirtylimit'wherernisthenormalstateresistivitythustheuppercriticalfieldforNbTi:g~900Jm-3K-2
rn~65x10-8Wmqc=9.KhenceBc2=18.5TMartinWilsonLecture1slide11Criticalproperties:currentdensityFluxoidsconsistofresistivecoreswithsuper-currentscirculatingroundthem.spacingbetweenthefluxoidsauniformdistributionoffluxoidsgivesnonetcurrentJc=0,butagradientproducesanetcurrentdensitygradientsareproducedbyinhomogeneitiesinthematerial,egdislocationsorprecipitatesprecipitatesofaTiinNbTifluxoidlatticeat5TonthesamescaleMartinWilsonLecture1slide12Criticalproperties:summaryCriticaltemperature:choosetherightmaterialtohavealargeenergygapor'depairingenergy'Criticalfield:chooseaType2superconductorwithahighcriticaltemperatureandahighnormalstateresistivityCriticalcurrentdensity:messupthemicrostructurebycoldworkingandprecipitationheattreatments -thisistheonlyonewherewehaveanycontrolSimilareffectsinhightemperaturesuperconductingmaterials:fluxoidlatticeinBSCCOMartinWilsonLecture1slide13Uppercriticalfieldsofmetallicsuperconductors
Note:ofallthemetallicsuperconductors,onlyNbTiisductile.AlltherestarebrittleintermetalliccompoundsMartinWilsonLecture1slide14Hightemperaturesuperconductorsmanysuperconductorswithcriticaltemperatureabove90K-BSCCOandYBCOoperateinliquidnitrogen?YBCOYBa2Cu3O7MartinWilsonLecture1slide15HightemperaturesuperconductorsYBCOstructureConductionlayersconsistoftwoCuO2layersseparatedbyyttriumatoms.Thechargelayerconsistsofcopper,bariumandoxygenatomsNote:thisstructuremakesthepropertieshighlyanisotropicMartinWilsonLecture1slide16Irreversibilityline-abigdisappointmentUnlikethemetallicsuperconductors,HTSdonothaveasharplydefinedcriticalcurrent.Athighertemperaturesandfields,thereisan'fluxflow'region,wherethematerialisresistive-althoughstillsuperconductingTheboundarybetweenfluxpinningandfluxflowiscalledtheirreversibilityline
metallicHTSMartinWilsonLecture1slide17Fieldsandwaystocreatethem:(1)IronConventionalelectromagnetsironyokereducesmagneticreluctance
reducesampereturnsrequired reducespowerconsumptionironguidesandshapesthefieldIIB100A/m-100A/m1.6TH-1.6TBIronelectromagnet–foraccelerator,HEPexperimenttransformer,motor,generator,etcBUTironsaturatesat~2TMartinWilsonLecture1slide18Fieldsandwaystocreatethem:(2)solenoidsnoiron–fieldshapeissetsolelybythewindingcylindricalwindingazimuthalcurrentflow -egwirewoundonbobbinaxialfieldBIIfieldlinescurveoutwardsattheendsthiscurvatureproducesnonuniformityoffieldverylongsolenoidshavelesscurvatureandmoreuniformfieldBIcanalsoreducefieldcurvaturebymakingthewindingthickerattheendsthismakesthefieldmoreuniformmorecomplicatedwindingshapescanbeusedtomakeveryuniformfieldsMartinWilsonLecture1slide19Fieldsandwaystocreatethem:(3)transversefieldssimplestwindingusesracetrackcoilssaddleshaped'dipole'coilsusedtomakemoreuniformfieldsknownasdipolemagnets(ironversionhas2poles)forgooduniformityneedspecialwindingcrosssections(LHCdipolewinding)someiron-butfieldshapeissetmainlybythewindingusedwhenthelongdimensionistransversetothefield,egacceleratormagnetsIIIBMartinWilsonLecture1slide20CurrentdensityIndesigningamagnet,whatreallymattersistheoverall'engineering'currentdensitytypically:forNbTimat=1.5to3.0ielmetal=0.4to0.25forNb3Snmat~3.0ielmetal~0.25forB2212mat=3.0to4.0ielmetal=0.25to0.2lwindingtakesaccountofspaceoccupiedbyinsulation,coolingchannels,mechanicalreinforcementetcandistypically0.7to0.8MartinWilsonLecture1slide21Importanceofcurrentdensity:(1)solenoidsthefieldproducedbyaninfinitelylongsolenoidisinsolenoidsoffinitelengththecentralfieldis
wherefisafactorlessthan1,typically~0.8sothethickness(volume,cost)ofasolenoidtoproduceagivenfieldisinverselyproportionaltotheengineeringcurrentdensityJe
MartinWilsonLecture1slide22SuperconductingsolenoidssmallsuperconductingsolenoidsforresearchapplicationsalargesolenoidinroutinecommercialoperationforthemagneticseparationofKaolin(chinaclay)MartinWilsonLecture1slide23Solenoidsarenotmuchusedinaccelerators.Theyarehoweverfrequentlyusedindetectors,wherethemagnetfieldprovidesmomentumanalysisofthereactionproducts.World'slargest:DelphisuperconductingsolenoidMartinWilsonLecture1slide24Importanceofcurrentdensity:(2)dipolesfieldproducedbyaperfectdipoleisJe=375Amm-2120mm
9.5x105Ampturns=1.9x106A.mpermJe=37.5Amm-2
9.5x106Ampturns=1.9x107A.mpermILHCdipole660mmIIBMartinWilsonLecture1slide25SomeengineeringcurrentdensitiesMartinWilsonLecture1slide26Criticallineandmagnetloadlines16weexpectthemagnettogoresistive'quench'wherethepeakfieldloadlinecrossesthecriticalcurrentline
*86422468101214FieldT1234567CurrentdensitykAmm-210
temperatureKMartinWilsonLecture1slide27TemperaturemargintoallowforpossibletemperatureexcursionsoperatemagnetbelowIcegrunningat1600Amm-2allowstemperaturetorise0.5Kbeforequench108642246810121416FieldT1234567temperatureK
CurrentdensitykAmm-2temperaturerisemaybecausedby -suddeninternalenergyrelease -aclosses -poorjoints -etc,etcMartinWilsonLecture1slide28Temperaturemargin-dependsonfieldB(T)Jc(4.2)Amm-2Jc(4.7)Amm-2Jc(4.2)Jc(4.7)33881333586%62000158179%954522742%108642246810121416FieldT1234567CurrentdensitykAmm-2temperatureKMartinWilsonLecture1slide29Degradedperformanceand'training'anearlydisappointmentformagnetmakerswasthefactthatmagnetsdidnotgostraighttotheexpectedquenchpoint,asgivenbytheintersectionoftheloadlinewiththecriticalcurrentlineinsteadthemagnetswentresistive-quenched-atmuchlowercurrentsafteraquench,thestoredenergyofthemagnetisdissipatedinthemagnet,raisingitstemperaturewayabovecritical -youmustwaitforittocooldownand thentryagainthesecondtryusuallyquenchesathighercurrentandsoonwiththethird,knownastrainingaftermanytrainingquenchesastablewellconstructedmagnet(bluepoints)getsclosetoit'sexpectedcriticalcurrent,butapoorlyconstructedmagnet(pinkpoints)nevergetsthereMartinWilsonLecture2slide30recaptrainingpoorqualitywindinggoodqualitywindingMartinWilsonLecture2slide31TrainingofanLHCdipolemagnetMartinWilsonLecture2slide32Causesoftraining:(1)lowspecificheatthespecificheatofallsubstancesfallswithtemperatureat4.2K,itis~2,000timeslessthanatroomtemperatureagivenreleaseofenergywithinthewindingthusproduceatemperaturerise2,000timesgreaterthanatroomtemperaturethesmallestenergyreleasecanthereforeproducecatastrophiceffects4.2K300KMartinWilsonLecture2slide33Causesoftraining:(2)Jcdecreaseswithtemperaturebut,bychoosingtooperatethemagnetatacurrentlessthancritical,wecanallowatemperaturemarginatanygivenfield,thecriticalcurrentofNbTifallsalmostlinearlywithtemperature-soanytemperaturerisedrivesthe conductorintotheresistivestateMartinWilsonLecture2slide34Causesoftraining:(3)conductormotionConductorsinamagnetarepushedbytheelectromagneticforces.Sometimestheymovesuddenlyunderthisforce-themagnet'creaks'asthestresscomeson.AlargefractionoftheworkdonebythemagneticfieldinpushingtheconductorisreleasedasfrictionalheatingtypicalnumbersforNbTi: B=5TJ=5x108A.m-2
soifd=10mm thenQ=2.5x104J.m-3Startingfrom4.2K
qfinal
=7.5KworkdoneperunitlengthofconductorifitispushedadistancedzW=F.dz=B.I.dzfrictionalheatingperunitvolumeQ=B.J.dzcan
you
engineerawindingtobetterthan10mm?MartinWilsonLecture2slide35Causesoftraining:(4)resincrackingCalculatethestainenergyinducedinresinbydifferentialthermalcontractionlet: s=tensilestress Y=Young’smodulus
e=differentialstrain n=Poisson’sratiotypically:e=(11.5–3)x10-3Y=7x109Pan=1/3
Wetrytostopwiremovementbyimpregnatingthewindingwithepoxyresin.Unfortunatelytheresincontractsmuchmorethanthemetal,soitgoesintotension.Furthermore,almostallorganicmaterialsbecomebrittleatlowtemperature.
brittleness+tension
cracking
energyreleaseQ1
=2.5x105J.m-3
qfinal=16KQ3
=2.3x106J.m-3 qfinal=28Kuniaxialstraintriaxialstrainanunknown,butlarge,fractionofthisstoredenergywillbereleasedasheatduringacrackInterestingfact:magnetsimpregnatedwithparaffinwaxshowalmostnotrainingalthoughthewaxisfullofcracksaftercooldown.PresumablythewaxbreaksbeforeithashadchancetostoreupanystrainenergyMartinWilsonLecture2slide36Howtoreducetraining?makethewindingfittogetherexactlytoreducemovementofconductorsunderfieldforcespre-compressthewindingtoreducemovementunderfieldforcesifusingresin,minimizethevolumeandchooseacrackresistanttypematchthermalcontractions,egfillepoxywithmineralorglassfibreimpregnatewithwax-butpoormechanicalproperties1)Reducethedisturbancesoccurringinthemagnetwinding2)Maketheconductorabletowithstanddisturbanceswithoutquenchingincreasethetemperaturemargin -operateatlowercurrent -highercriticaltemperature-HTS?increasethecoolingincreasethespecificheatmostof2)maybecharacterizedbyasinglenumberMinimumQuenchEnergyMQE=energyinputatapointwhichisjustenoughtotriggeraquenchMartinWilsonLecture2slide37QuenchinitiationbyadisturbanceCERNpictureoftheinternalvoltageinanLHCdipolejustbeforeaquenchnotetheinitiatingspike-conductormotion?afterthespike,conductorgoesresistive,thenitalmostrecoversbutthengoesontoafullquenchcanwedesignconductorstoencouragethatrecoveryandavoidthequench?MartinWilsonLecture2slide38MinimumpropagatingzoneMPZThinkofaconductorwhereashortsectionhasbeenheated,sothatitisresistiveIfheatisconductedoutoftheresistivezonefasterthanitisgenerated,thezonewillshrink-viceversaitwillgrow.TheboundarybetweenthesetwoconditionsiscalledtheminimumpropagatingzoneMPZforbeststabilitymakeMPZaslargeaspossible where: k=thermalconductivity r=resistivity A=crosssectionalareaofconductor
h=heattransfercoefficienttocoolant–ifthereisanyincontact
P=cooledperimeterofconductorthebalancepointmaybefoundbyequatingheatgenerationtoheatremoved.Veryapproximately,wehave:lqcqohAJPEnergytosetupMPZiscalledtheMinimumQuenchEnergy
MQEMartinWilsonLecture2slide39HowtomakealargeMPZandMQEmakethermalconductivityklargemakeresistivityrsmallmakeheattransferhlarge(limitiscryostability)but
lowJemakeratiocooledperimeter/crosssectionareaP/AlargeMartinWilsonLecture2slide40LargeMPZlargeMQElesstrainingmakethermalconductivityklargemakeresistivityrsmallmakeheattransferhlargemakeratiocooledperimeter/crosssectionareaP/AlargeNbTihashighrandlowkcopperhaslowrandhighkmixcopperandNbTiinafilamentarycompositewiremakeNbTiinfinefilamentsforintimatemixingmaximumdiameteroffilaments~50mmmakethewindingsporoustoliquidhelium -superfluidisbestfinefilamentsalsoeliminatefluxjumping (seelaterslides)MartinWilsonLecture2slide41MeasurementofMQEmeasureMQEbyinjectingheatpulsesintoasinglewireofthecablegoodresultswhenspacesincablearefilledwithporousmetal -excellentheattransfertotheheliumMartinWilsonLecture2slide42Anothercauseoftraining:fluxjumpingusualmodelisasuperconductingslabinachangingmagneticfieldByassumeit'sinfinitelylonginthez
andydirections-simplifiestoa1dimproblemdB/dtinducesanelectricfieldEwhichcausesscreeningcurrentstoflowatcriticalcurrentdensityJcknownasthecriticalstatemodelor
Beanmodelinthe1diminfiniteslabgeometry,Maxwell'sequationsays
BJJxwhenasuperconductorissubjectedtoachangingmagneticfield,screeningcurrentsareinducedtoflowscreeningcurrentsareinadditiontothetransportcurrent,whichcomesfromthepowersupplytheyarelikeeddycurrentsbut,becausethereisnoresistance,theydon'tdecaysouniformJcmeansaconstantfieldgradientinsidethesuperconductorMartinWilsonLecture2slide43ThefluxpenetrationprocessBfieldincreasingfromzerofielddecreasingthroughzeroplotfieldprofileacrosstheslabfullypenetratedMartinWilsonLecture2slide44ThefluxpenetrationprocessBfieldincreasingfromzerofielddecreasingthroughzeroplotfieldprofileacrosstheslabfullypenetratedBeancriticalstatemodelcurrentdensityeverywhereisJcorzerochangecomesinfromtheoutersurfaceMartinWilsonLecture2slide45FluxpenetrationfromanotherviewpointsuperconductorvacuumThinkofthescreeningcurrents,intermsofagradientinfluxoiddensitywithinthesuperconductor.Pressurefromtheincreasingexternalfieldpushesthefluxoidsagainstthepinningforce,andcausesthemtopenetrate,withacharacteristicgradientinfluxoiddensityAtacertainleveloffield,thegradientoffluxoiddensitybecomesunstableandcollapses
–afluxjumpMartinWilsonLecture2slide46Fluxjumping:whyithappensItarisesbecause:-magneticfieldinducesscreeningcurrents,flowingatcriticaldensityJcUnstablebehaviourisshownbyalltype2andHTsuperconductorswhensubjectedtoamagneticfieldBB*changeinscreeningcurrentsallowsfluxtomoveintothesuperconductorfluxmotiondissipatesenergythermaldiffusivityinsuperconductorsislow,soenergydissipationcauseslocaltemperaturerisecriticalcurrentdensityfallswithincreasingtemperaturegoto*DQDqDf
JcCurefluxjumpingbymakingsuperconductorintheformoffinefilaments–weakens
Df
DQMartinWilsonLecture2slide47Fluxjumping:thenumbersforNbTitypicalfiguresforNbTiat4.2Kand1TJccriticalcurrentdensity=7.5x109Am-2
gdensity=6.2x103kg.m3Cspecificheat=0.89J.kg-1K-1
q
ccriticaltemperature=9.0KNotes:leaststableatlowfieldbecauseJcishighestinstabilitygetsworsewithdecreasingtemperaturebecauseJcincreasesandCdecreasescriteriongivesthesizeatwhichfilamentisjuststableagainstinfinitelysmalldisturbances -stillsensitivetomoderatedisturbances,egmechanicalmovementbettertogosomewhatsmallerthanthelimitingsizeinpractice50mmdiameterseemstoworkOKFluxjumpingisasolvedproblem
soa=33mm,ie66mmdiameterfilamentscriterionforstabilityagainstfluxjumpinga=halfwidthoffilamentMartinWilsonLecture2slide48Magnetizationforcylindricalfilamentstheinnercurrentboundaryisroughlyelliptical(controversial)whenfullypenetrated,themagnetizationiswherea=filamentradiusNote:MisheredefinedperunitvolumeofNbTifilamentWhenviewedfromoutsidethesample,thepersistentcurrentsproduceamagneticmoment.ProblemforacceleratorsbecauseitspoilstheprecisefieldshapeWecandefineamagnetization(magneticmomentperunitvolume)NBunitsofHforafullypenetratedslabMartinWilsonLecture2slide49MagnetizationofasuperconductorTheinducedcurrentsproduceamagneticmomentandhenceamagnetization =magneticmomentperunitvolumeMBextMartinWilsonLecture2slide50Synchrotroninjectionsynchrotroninjectsatlowfield,rampstohighfieldandthenbackdownagainnotehowquicklythemagnetizationchangeswhenwestarttherampupMBBinjectionMartinWilsonLecture2slide51MeasurementofmagnetizationInfield,thesuperconductorbehavesjustlikeamagneticmaterial.Wecanplotthemagnetizationcurveusingamagnetometer.Itshowshysteresis-justlikeirononlyinthiscasethemagnetizationisbothdiamagneticandparamagnetic.
BMNotetheminorloops,wherefieldandthereforescreeningcurrentsarereversingThemagnetometer,comprising2balancedsearchcoils,isplacedwithintheboreofasuperconductingsolenoid.Thesecoilsareconnectedinseriesoppositionandtheangleofsmallbalancingcoilisadjustedsuchthat,withnothinginthecoils,thereisnosignalattheintegrator.Withasuperconductingsampleinonecoil,theintegratormeasuresmagnetizationwhenthesolenoidfieldissweptupanddownMartinWilsonLecture2slide52FinefilamentsrecapWecanreduceMbymakingthesuperconductorasfinefilaments.Foreaseofhandling,anarrayofmanyfilamentsisembeddedinacoppermatrixUnfortunately,inchangingfields,thefilamentarecoupledtogether;screeningcurrentsgouptheLHSfilamentsandreturndowntheRHSfilaments,crossingthecop
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 唐山工业职业技术学院《工业机器人系统集成与应用》2023-2024学年第二学期期末试卷
- 丽水职业技术学院《医学法学》2023-2024学年第二学期期末试卷
- 成都艺术职业大学《装配式建筑概论》2023-2024学年第一学期期末试卷
- 泰州学院《乐理与视唱1》2023-2024学年第二学期期末试卷
- 广东省博罗中学2025年高三下学期期中考试(教学质量检测试题)生物试题含解析
- 泰州学院《生物材料前沿(Ⅱ)》2023-2024学年第二学期期末试卷
- 中国民用航空飞行学院《第二外语(日语)Ⅱ》2023-2024学年第二学期期末试卷
- 江苏财经职业技术学院《大国之都北京的城市历史与文化》2023-2024学年第二学期期末试卷
- 武汉体育学院《文化与创新制造之路》2023-2024学年第二学期期末试卷
- 山东海事职业学院《古建筑修复技术》2023-2024学年第二学期期末试卷
- 2023北京海淀初一(下)期末英语试卷含答案
- 内蒙古达茂旗明水元墓出土丝织品的初步研究
- 质量手册前言部分201007
- 电力设备生产项目技术方案
- 2023年上海嘉定工业区招聘笔试参考题库附带答案详解
- 村居hao优质获奖课件
- 丹东鑫源供热有限责任公司扩建一台64MWh热水锅炉工程项目环境影响报告
- 矿井瓦斯防治课件版 第13章 煤与瓦斯突出分类、特点、机理及规律
- 2023年中科院生态学考博真题题汇总
- 药剂科主任岗位权责目录及廉政风险防控措施登记表
- 2023年鞍钢集团招聘笔试题库及答案解析
评论
0/150
提交评论