版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
(完整版)人教版七年级数学下册期末压轴难题试卷及答案精选模拟一、选择题1.的平方根是()A.- B. C. D.2.下列现象中是平移的是()A.将一张纸对折 B.电梯的上下移动C.摩天轮的运动 D.翻开书的封面3.已知A(−1,2)为平面直角坐标系中一点,下列说法正确的是()A.点在第一象限 B.点的横坐标是C.点到轴的距离是 D.以上都不对4.下列两个命题:①过一点有且只有一条直线和已知直线平行;②垂直于同一条直线的两条直线互相平行,其中判断正确的是()A.①②都对 B.①对②错 C.①②都错 D.①错②对5.如图,,平分,平分,,,则下列结论:①,②,③,④.其中正确的是()A.①②③ B.①②④ C.②③④ D.①②③④6.下列说法中正确的是()A.有理数和数轴上的点一一对应 B.0.304精确到十分位是0.30C.立方根是本身的数只有0 D.平方根是本身的数只有07.如图,直线l1∥l2且与直线l3相交于A、C两点.过点A作AD⊥AC交直线l2于点D.若∠BAD=35°,则∠ACD=()A.35° B.45° C.55° D.70°8.如图,一个蒲公英种子从平面直角坐标系的原点出发,向正东走米到达点,再向正北方向走米到达点,再向正西方向走米到达点,再向正南方向走米到达点,再向正东方向走米到达点,以此规律走下去,当蒲公英种子到达点时,它在坐标系中坐标为()A. B. C. D.二、填空题9.的算术平方根是______10.若与关于轴对称,则______.11.如图,AD∥BC,∠ABC的角平分线BP与∠BAD的角平分线AP相交于点P,作PE⊥AB于点E.若PE=2,则两平行线AD与BC间的距离为_____.12.如图所示,把一个长方形纸片沿EF折叠后,点D,C分别落在D′,C′的位置.若∠EFB=72°,则∠AED′=__.13.如图,在△ABC中,∠ACB=90°,∠A<∠B,点D为AB边上一点且不与A、B重合,将△ACD沿CD翻折得到△ECD,直线CE与直线AB相交于点F.若∠A=α,当△DEF为等腰三角形时,∠ACD=__________________.(用α的代数式表示∠ACD)14.任何实数a,可用表示不超过a的最大整数,如,现对50进行如下操作:50,这样对50只需进行3次操作后变为1,类似地,对72只需进行3次操作后变为1;那么只需进行3次操作后变为1的所有正整数中,最大的是______.15.已知的面积为,其中两个顶点的坐标分别是,顶点在轴上,那么点的坐标为____________16.在平面直角坐标系中,一个智能机器人接到的指令是:从原点出发,按“向上→向右→向下→向右→向下→向右→向上→向右”的方向依次不断移动,每次移动1个单位长度,其移动路线如图所示,第一次移动到点,第二次移动到点,……,第次移动到点,则点的坐标是______.三、解答题17.计算:(1)(2)18.求下列各式中的x值(1)x2﹣6(2)(2x﹣1)3=﹣419.如图,,,求度数.完成说理过程并注明理由.解:∵,∴________()又∵,∴,∴__________()∴()∵,∴______度.20.将△ABO向右平移4个单位,再向下平移1个单位,得到三角形A′B′O′(1)请画出平移后的三角形A′B′O′.(2)写出点A′、O′的坐标.21.已知=0,求实数a、b的值并求出的整数部分和小数部分.二十二、解答题22.动手试一试,如图1,纸上有10个边长为1的小正方形组成的图形纸.我们可以按图2的虚线将它剪开后,重新拼成一个大正方形.(1)基础巩固:拼成的大正方形的面积为______,边长为______;(2)知识运用:如图3所示,将图2水平放置在数轴上,使得顶点B与数轴上的重合.以点B为圆心,边为半径画圆弧,交数轴于点E,则点E表示的数是______;(3)变式拓展:①如图4,给定的方格纸(每个小正方形边长为1),你能从中剪出一个面积为13的正方形吗?若能,请在图中画出示意图;②请你利用①中图形在数轴上用直尺和圆规表示面积为13的正方形边长所表示的数.二十三、解答题23.如图,已知直线射线,.是射线上一动点,过点作交射线于点,连接.作,交直线于点,平分.(1)若点,,都在点的右侧.①求的度数;②若,求的度数.(不能使用“三角形的内角和是”直接解题)(2)在点的运动过程中,是否存在这样的偕形,使?若存在,直接写出的度数;若不存在.请说明理由.24.已知,交AC于点E,交AB于点F.(1)如图1,若点D在边BC上,①补全图形;②求证:.(2)点G是线段AC上的一点,连接FG,DG.①若点G是线段AE的中点,请你在图2中补全图形,判断,,之间的数量关系,并证明;②若点G是线段EC上的一点,请你直接写出,,之间的数量关系.25.Rt△ABC中,∠C=90°,点D、E分别是△ABC边AC、BC上的点,点P是一动点.令∠PDA=∠1,∠PEB=∠2,∠DPE=∠α.(1)若点P在线段AB上,如图(1)所示,且∠α=50°,则∠1+∠2=°;(2)若点P在边AB上运动,如图(2)所示,则∠α、∠1、∠2之间的关系为:;(3)若点P运动到边AB的延长线上,如图(3)所示,则∠α、∠1、∠2之间有何关系?猜想并说明理由.(4)若点P运动到△ABC形外,如图(4)所示,则∠α、∠1、∠2之间的关系为:.26.如图,直线,一副直角三角板中,.(1)若如图1摆放,当平分时,证明:平分.(2)若如图2摆放时,则(3)若图2中固定,将沿着方向平移,边与直线相交于点,作和的角平分线相交于点(如图3),求的度数.(4)若图2中的周长,现将固定,将沿着方向平移至点与重合,平移后的得到,点的对应点分别是,请直接写出四边形的周长.(5)若图2中固定,(如图4)将绕点顺时针旋转,分钟转半圈,旋转至与直线首次重合的过程中,当线段与的一条边平行时,请直接写出旋转的时间.【参考答案】一、选择题1.C解析:C【分析】根据平方根的定义(如果一个数的平方等于,那么这个数叫做的平方根)即可得.【详解】解:因为,所以的平方根是,故选:C.【点睛】本题考查了平方根,熟练掌握平方根的定义是解题关键.2.B【分析】根据平移的概念,依次判断即可得到答案;【详解】解:根据平移的概念:把一个图形整体沿某一的方向移动,这种图形的平行移动,叫做平移变换,简称平移,判断:A、将一张纸对折,不符合平移定解析:B【分析】根据平移的概念,依次判断即可得到答案;【详解】解:根据平移的概念:把一个图形整体沿某一的方向移动,这种图形的平行移动,叫做平移变换,简称平移,判断:A、将一张纸对折,不符合平移定义,故本选项错误;B、电梯的上下移动,符合平移的定义,故本选项正确;C、摩天轮的运动,不符合平移定义,故本选项错误;D、翻开的封面,不符合平移的定义,故本选项错误.故选B.【点睛】本题考查平移的概念,在平面内,把一个图形整体沿某一的方向移动,这种图形的平行移动,叫做平移变换,简称平移.3.C【分析】根据点的坐标性质以及在坐标轴上点的性质分别判断得出即可.【详解】解:A、−1<0,2>0,点在第二象限,原说法错误,该选项不符合题意;B、点的横坐标是−1,原说法错误,该选项不符合题意;C、点到y轴的距离是1,该选项正确,符合题意;D、以上都不对,说法错误,该选项不符合题意;故选:C.【点睛】本题主要考查了点的坐标,根据坐标平面内点的性质得出是解题关键.4.C【分析】根据平行公理及其推论判断即可.【详解】解:①过直线外一点有且只有一条直线和已知直线平行,故错误;②在同一平面内,垂直于同一条直线的两条直线互相平行,故错误;故选:C.【点睛】本题主要考查了命题与定理,平行公理及其推论,属于基础知识,要牢牢掌握.5.B【分析】根据角平分线的性质可得,,,再利用平角定义可得∠BCF=90°,进而可得①正确;首先计算出∠ACB的度数,再利用平行线的性质可得∠2的度数,从而可得∠1的度数;利用三角形内角和计算出∠3的度数,然后计算出∠ACE的度数,可分析出③错误;根据∠3和∠4的度数可得④正确.【详解】解:如图,∵BC平分∠ACD,CF平分∠ACG,∴∵∠ACG+∠ACD=180°,∴∠ACF+∠ACB=90°,∴CB⊥CF,故①正确,∵CD∥AB,∠BAC=50°,∴∠ACG=50°,∴∠ACF=∠4=25°,∴∠ACB=90°-25°=65°,∴∠BCD=65°,∵CD∥AB,∴∠2=∠BCD=65°,∵∠1=∠2,∴∠1=65°,故②正确;∵∠BCD=65°,∴∠ACB=65°,∵∠1=∠2=65°,∴∠3=50°,∴∠ACE=15°,∴③∠ACE=2∠4错误;∵∠4=25°,∠3=50°,∴∠3=2∠4,故④正确,故选:B.【点睛】此题主要考查了平行线的性质,以及角平分线的性质,关键是理清图中角之间的和差关系.6.D【分析】根据实数与数轴、精确度、立方根及平方根的概念和性质逐项判断即可.【详解】解:A.实数和数轴上的点一一对应,原说法错误;B.0.304精确到十分位是0.3,原说法错误;C.立方根是本身的数是0、±1,原说法错误;D.平方根是本身的数只有0,正确,故选:D.【点睛】本题考查了实数与数轴、精确度、立方根及平方根的概念和性质,熟练掌握基础知识是解题关键.7.C【分析】由题意易得∠CAD=90°,则有∠CAB=125°,然后根据平行线的性质可求解.【详解】解:∵AD⊥AC,∴∠CAD=90°,∵∠BAD=35°,∴∠CAB=∠BAD+∠CAD=125°,∵l1∥l2,∴∠ACD+∠CAB=180°,∴∠ACD=55°;故选C.【点睛】本题主要考查垂线的定义及平行线的性质,熟练掌握垂线的定义及平行线的性质是解题的关键.8.B【分析】由题意可知:OA1=3;A1A2=3×2;A2A3=3×3;可得规律:An﹣1An=3n,根据规律可得到A9A10=3×10=30,进而求得A10的横纵坐标.【详解】解:根据题意可解析:B【分析】由题意可知:OA1=3;A1A2=3×2;A2A3=3×3;可得规律:An﹣1An=3n,根据规律可得到A9A10=3×10=30,进而求得A10的横纵坐标.【详解】解:根据题意可知:OA1=3,A1A2=6,A2A3=9,A3A4=12,A4A5=15,A5A6=18•••,A9A10=30,∴A1点坐标为(3,0),A2点坐标为(3,6),A3点坐标为(﹣6,6),A4点坐标为(﹣6,﹣6),A5点坐标为(9,﹣6),A6点坐标为(9,12),以此类推,A9点坐标为(15,﹣12),所以A10点横坐标为15,纵坐标为﹣12+30=18,∴A10点坐标为(15,18),故选:B.【点睛】本题主要考查了坐标确定位置的运用,解题的关键是发现规律,利用规律解决问题,解题时注意:各象限内点P(a,b)的坐标特征为:①第一象限:a>0,b>0;②第二象限:a<0,b>0;③第三象限:a<0,b<0;④第四象限:a>0,b<0.二、填空题9.3【分析】根据算术平方根的性质解答即可.【详解】解:,0.09的算术平方根是0.3.故答案为:0.3.【点睛】本题考查了算术平方根,解题的关键是化简后再求算术平方根.解析:3【分析】根据算术平方根的性质解答即可.【详解】解:,0.09的算术平方根是0.3.故答案为:0.3.【点睛】本题考查了算术平方根,解题的关键是化简后再求算术平方根.10.【分析】根据关于y轴对称的点的坐标特征,即可求出m的值.【详解】解:∵A(m,-3)与B(4,-3)关于y轴对称,∴m=-4,故答案为:-4.【点睛】本题主要考查了关于y轴对称点的坐解析:【分析】根据关于y轴对称的点的坐标特征,即可求出m的值.【详解】解:∵A(m,-3)与B(4,-3)关于y轴对称,∴m=-4,故答案为:-4.【点睛】本题主要考查了关于y轴对称点的坐标,解题的关键在于能够熟练掌握,如果两点关于y轴对称,那么这两个点的横坐标互为相反数,纵坐标相等.11.4【分析】根据角平分线的性质以及平行线的性质即可得出PM=PE=2,PE=PN=2,即可得出答案.【详解】解:过点P作MN⊥AD,∵AD∥BC,∠ABC的角平分线BP与∠BAD的角平分线A解析:4【分析】根据角平分线的性质以及平行线的性质即可得出PM=PE=2,PE=PN=2,即可得出答案.【详解】解:过点P作MN⊥AD,∵AD∥BC,∠ABC的角平分线BP与∠BAD的角平分线AP相交于点P,PE⊥AB于点E,∴AP⊥BP,PN⊥BC,∴PM=PE=2,PE=PN=2,∴MN=2+2=4.故答案为4.12.36°【分析】根据平行线的性质可知∠DEF=∠EFB=72°,由折叠的性质求出∠D′EF72°,然后可求∠AED′的值.【详解】解:∵四边形ABCD为长方形,∴AD//BC,∴∠DEF=解析:36°【分析】根据平行线的性质可知∠DEF=∠EFB=72°,由折叠的性质求出∠D′EF72°,然后可求∠AED′的值.【详解】解:∵四边形ABCD为长方形,∴AD//BC,∴∠DEF=∠EFB=72°,又由折叠的性质可得∠D′EF=∠DEF=72°,∴∠AED′=180°﹣72°﹣72°=36°,故答案为:36°.【点睛】本题考查了平行线的性质,折叠的性质,熟练掌握折叠的性质是解答本题的关键.13.或或【分析】若为等腰三角形,则,根据三角形外角的性质以及三角形内角和定理即可求得结果.【详解】解:由翻折的性质可知,,如图1,当时,则,,,,,当时,为等腰三角形,故答案解析:或或【分析】若为等腰三角形,则,根据三角形外角的性质以及三角形内角和定理即可求得结果.【详解】解:由翻折的性质可知,,如图1,当时,则,,,,,当时,为等腰三角形,故答案为.当时,;,,,;,,如图2,当时,;,,;当或或时,为等腰三角形,故答案为:或或.【点睛】本题考查翻折变换、等腰三角形的性质、三角形外角的性质以及三角形内角和定理等知识,解题的关键是熟练掌握三角形外角的性质以及三角形内角和定理.14.255【分析】根据[a]的含义求出这个数的范围,再求最大值.【详解】解:设这个数是p,∵[x]=1.∴1≤x<2.∴1≤<2.∴1≤m<4.∴1≤<16.∴1≤p<256.∵p解析:255【分析】根据[a]的含义求出这个数的范围,再求最大值.【详解】解:设这个数是p,∵[x]=1.∴1≤x<2.∴1≤<2.∴1≤m<4.∴1≤<16.∴1≤p<256.∵p是整数.∴p的最大值为255.故答案为:255.【点睛】本题考查了估算无理数的大小,正确理解取整含义是求解本题的关键.15.或【分析】已知,可知AB=8,已知的面积为,即可求出OC长,得到C点坐标.【详解】∵∴AB=8∵的面积为∴=16∴OC=4∴点的坐标为(0,4)或(0,-4)故答案为:(0,4)解析:或【分析】已知,可知AB=8,已知的面积为,即可求出OC长,得到C点坐标.【详解】∵∴AB=8∵的面积为∴=16∴OC=4∴点的坐标为(0,4)或(0,-4)故答案为:(0,4)或(0,-4)【点睛】本题考查了直角坐标系中坐标的性质,已知两点坐标可得出两点间距离长度,如果此两点在坐标轴上,求解距离很简单,如果不在坐标轴上,可通过两点间距离公式求解.16.(1010,-1)【分析】根据图象可得移动8次图象完成一个循环,从而可得出点的坐标.【详解】解:A1(0,1),A2(1,1),A3(1,0),A4(2,0),A5(2,-1),A6(3,-解析:(1010,-1)【分析】根据图象可得移动8次图象完成一个循环,从而可得出点的坐标.【详解】解:A1(0,1),A2(1,1),A3(1,0),A4(2,0),A5(2,-1),A6(3,-1),A7(3,0),A8(4,0),A9(4,1),…,可以的到,图像时经过8次移动经历一个循环,其中纵坐标每个循环对应点不发生变化,横坐标每一次循环增加4∵2021÷8=252…5,∴的坐标为(252×4+2,-1),∴点的坐标是是(1010,-1).故答案为:(1010,-1).【点睛】本题考查了点的坐标的变化变化,解答本题的关键是仔细观察图象,得到点的变化规律,难度一般.三、解答题17.(1);(2)【分析】(1)根据算术平方根,立方根的求法结合实数混合运算法则计算即可;(2)先根据绝对值的意义化简绝对值,然后根据算术平方根的求法以及实数混合运算法则计算即可.【详解】解:解析:(1);(2)【分析】(1)根据算术平方根,立方根的求法结合实数混合运算法则计算即可;(2)先根据绝对值的意义化简绝对值,然后根据算术平方根的求法以及实数混合运算法则计算即可.【详解】解:(1)原式==;(2)原式=.【点睛】本题考查了实数的混合运算,算术平方根以及立方根的求法,绝对值等知识点,题目比较基础,熟练掌握基础知识点是关键.18.(1);(2).【分析】(1)根据平方根的定义解答即可;(2)根据立方根的定义解答即可.【详解】(1)x2﹣6,移项得:,开方得:x,解得:;(2)(2x﹣1)3=﹣4,变形得:解析:(1);(2).【分析】(1)根据平方根的定义解答即可;(2)根据立方根的定义解答即可.【详解】(1)x2﹣6,移项得:,开方得:x,解得:;(2)(2x﹣1)3=﹣4,变形得:(2x﹣1)3=﹣8,开立方得:,∴2x=1,解得:.【点睛】本题考查了立方根及平方根的应用,注意一个正数的平方根有两个,且互为相反数,一个数的立方根只有一个.19.∠3;两直线平行,同位角相等;DG;内错角相等,两直线平行;∠BAC;两直线平行,同旁内角互补;70【分析】根据两直线平行,同位角相等可得∠2=∠3,通过等量代换得出∠1=∠3,再根据内错角相等解析:∠3;两直线平行,同位角相等;DG;内错角相等,两直线平行;∠BAC;两直线平行,同旁内角互补;70【分析】根据两直线平行,同位角相等可得∠2=∠3,通过等量代换得出∠1=∠3,再根据内错角相等,两直线平行,得出AB∥DG,然后根据两直线平行,同旁内角互补解答即可.【详解】解:∵EF∥AD,∴∠2=∠3(两直线平行,同位角相等).又∵∠1=∠2,∴∠1=∠3,∴AB∥DG(内错角相等,两直线平行).∴∠AGD+∠BAC=180°(两直线平行,同旁内角互补).∵∠AGD=110°,∴∠BAC=70度.故答案为:∠3;两直线平行,同位角相等;DG;内错角相等,两直线平行;∠BAC;两直线平行,同旁内角互补;70.【点睛】本题考查了平行线的判定与性质,熟记性质与判定方法,并判断出AB∥DG是解题的关键.20.(1)见解析;(2)A′,O′【分析】(1)分别作出A,B,O的对应点A′,B′,O′即可.(2)根据点的位置写出坐标即可.【详解】解:(1)如图,△A′B′O′即为所求作.(2)A′(解析:(1)见解析;(2)A′,O′【分析】(1)分别作出A,B,O的对应点A′,B′,O′即可.(2)根据点的位置写出坐标即可.【详解】解:(1)如图,△A′B′O′即为所求作.(2)A′(2,1),O′(4,−1).【点睛】本题考查作图−平移变换,解题的关键是熟练掌握基本知识,属于中考常考题型.21.4,【分析】根据分母不等于0,以及非负数的性质列式求出a、b的值,再根据根据被开方数估算无理数的大小即可得解.【详解】解:根据题意得,3a-b=0,a2-49=0且a+7>0,解得a=7,解析:4,【分析】根据分母不等于0,以及非负数的性质列式求出a、b的值,再根据根据被开方数估算无理数的大小即可得解.【详解】解:根据题意得,3a-b=0,a2-49=0且a+7>0,解得a=7,b=21,∵16<21<25,∴的整数部分是4,小数部分是.【点睛】本题考查了绝对值非负数,算术平方根非负数的性质,根据几个非负数的和等于0,则每一个算式都等于0列式是解题的关键.二十二、解答题22.(1)10,;(2);(3)见解析;(4)见解析【分析】(1)易得10个小正方形的面积的和,那么就得到了大正方形的面积,求得面积的算术平方根即可为大正方形的边长;(2)根据大正方形的边长结合实解析:(1)10,;(2);(3)见解析;(4)见解析【分析】(1)易得10个小正方形的面积的和,那么就得到了大正方形的面积,求得面积的算术平方根即可为大正方形的边长;(2)根据大正方形的边长结合实数与数轴的关系可得结果;(3)以2×3的长方形的对角线为边长即可画出图形;(4)得到①中正方形的边长,再利用实数与数轴的关系可画出图形.【详解】解:(1)∵图1中有10个小正方形,∴面积为10,边长AD为;(2)∵BC=,点B表示的数为-1,∴BE=,∴点E表示的数为;(3)①如图所示:②∵正方形面积为13,∴边长为,如图,点E表示面积为13的正方形边长.【点睛】本题考查了图形的剪拼,正方形的面积,算术平方根,实数与数轴,巧妙地根据网格的特点画出正方形是解此题的关键.二十三、解答题23.(1)①35°;(2)55°;(2)存在,或【分析】(1)①依据平行线的性质以及角平分线的定义,即可得到∠PCG的度数;②依据平行线的性质以及角平分线的定义,即可得到∠ECG=∠GCF=20°解析:(1)①35°;(2)55°;(2)存在,或【分析】(1)①依据平行线的性质以及角平分线的定义,即可得到∠PCG的度数;②依据平行线的性质以及角平分线的定义,即可得到∠ECG=∠GCF=20°,再根据PQ∥CE,即可得出∠CPQ=∠ECP=60°;(2)设∠EGC=3x,∠EFC=2x,则∠GCF=3x-2x=x,分两种情况讨论:①当点G、F在点E的右侧时,②当点G、F在点E的左侧时,依据等量关系列方程求解即可.【详解】解:(1)①∵AB∥CD,∴∠CEB+∠ECQ=180°,∵∠CEB=110°,∴∠ECQ=70°,∵∠PCF=∠PCQ,CG平分∠ECF,∴∠PCG=∠PCF+∠FCG=∠QCF+∠FCE=∠ECQ=35°;②∵AB∥CD,∴∠QCG=∠EGC,∵∠QCG+∠ECG=∠ECQ=70°,∴∠EGC+∠ECG=70°,又∵∠EGC-∠ECG=30°,∴∠EGC=50°,∠ECG=20°,∴∠ECG=∠GCF=20°,∠PCF=∠PCQ=(70°−40°)=15°,∵PQ∥CE,∴∠CPQ=∠ECP=∠ECQ-∠PCQ=70°-15°=55°.(2)52.5°或7.5°,设∠EGC=3x°,∠EFC=2x°,①当点G、F在点E的右侧时,∵AB∥CD,∴∠QCG=∠EGC=3x°,∠QCF=∠EFC=2x°,则∠GCF=∠QCG-∠QCF=3x°-2x°=x°,∴∠PCF=∠PCQ=∠FCQ=∠EFC=x°,则∠ECG=∠GCF=∠PCF=∠PCD=x°,∵∠ECD=70°,∴4x=70°,解得x=17.5°,∴∠CPQ=3x=52.5°;②当点G、F在点E的左侧时,反向延长CD到H,∵∠EGC=3x°,∠EFC=2x°,∴∠GCH=∠EGC=3x°,∠FCH=∠EFC=2x°,∴∠ECG=∠GCF=∠GCH-∠FCH=x°,∵∠CGF=180°-3x°,∠GCQ=70°+x°,∴180-3x=70+x,解得x=27.5,∴∠FCQ=∠ECF+∠ECQ=27.5°×2+70°=125°,∴∠PCQ=∠FCQ=62.5°,∴∠CPQ=∠ECP=62.5°-55°=7.5°,【点睛】本题主要考查了平行线的性质,掌握两直线平行,同旁内角互补;两直线平行,内错角相等是解题的关键.24.(1)①见解析;②;见解析(2)①∠AFG+∠EDG=∠DGF;②∠AFG-∠EDG=∠DGF【分析】(1)①根据题意画出图形;②依据DE∥AB,DF∥AC,可得∠EDF+∠AFD=180°,∠解析:(1)①见解析;②;见解析(2)①∠AFG+∠EDG=∠DGF;②∠AFG-∠EDG=∠DGF【分析】(1)①根据题意画出图形;②依据DE∥AB,DF∥AC,可得∠EDF+∠AFD=180°,∠A+∠AFD=180°,进而得出∠EDF=∠A;(2)①过G作GH∥AB,依据平行线的性质,即可得到∠AFG+∠EDG=∠FGH+∠DGH=∠DGF;②过G作GH∥AB,依据平行线的性质,即可得到∠AFG-∠EDG=∠FGH-∠DGH=∠DGF.【详解】解:(1)①如图,②∵DE∥AB,DF∥AC,∴∠EDF+∠AFD=180°,∠A+∠AFD=180°,∴∠EDF=∠A;(2)①∠AFG+∠EDG=∠DGF.如图2所示,过G作GH∥AB,∵AB∥DE,∴GH∥DE,∴∠AFG=∠FGH,∠EDG=∠DGH,∴∠AFG+∠EDG=∠FGH+∠DGH=∠DGF;②∠AFG-∠EDG=∠DGF.如图所示,过G作GH∥AB,∵AB∥DE,∴GH∥DE,∴∠AFG=∠FGH,∠EDG=∠DGH,∴∠AFG-∠EDG=∠FGH-∠DGH=∠DGF.【点睛】本题考查了平行线的判定和性质:两直线平行,内错角相等.正确的作出辅助线是解题的关键.25.(1)140°;(2)∠1+∠2=90°+α;(3)∠1=90°+∠2+α,理由见解析;(4)∠2=90°+∠1﹣α.【详解】试题分析:(1)根据四边形内角和定理以及邻补角的定义,得出∠1+∠2解析:(1)140°;(2)∠1+∠2=90°+α;(3)∠1=90°+∠2+α,理由见解析;(4)∠2=90°+∠1﹣α.【详解】试题分析:(1)根据四边形内角和定理以及邻补角的定义,得出∠1+∠2=∠C+∠α,进而得出即可;(2)利用(1)中所求的结论得出∠α、∠1、∠2之间的关系即可;(3)利用三角外角的性质,得出∠1=∠C+∠2+α=90°+∠2+α;(4)利用三角形内角和定理以及邻补角的性质可得出∠α、∠1、∠2之间的关系.试题分析:(1)∵∠1+∠2+∠CDP+∠CEP=360°,∠C+∠α+∠CDP+∠CEP=360°,∴∠1+∠2=∠C+∠α,∵∠C=90°,∠α=50°,∴∠1+∠2=140°,故答案为140;(2)由(1)得∠α+∠C=∠1+∠2,∴∠1+∠2=90°+∠α.故答案为∠1+∠2=90°+∠α.(3)∠1=90°+∠2+∠α.理由如下:如图③,设DP与BE的交点为M,∵∠2+∠α=∠DME,∠DME+∠C=∠1,∴∠1=∠C+∠2+∠α=90°+∠2+∠α.(4)如图④,设PE与AC的交点为F,∵∠PFD=∠EFC,∴180°-∠PFD=180°-∠EFC,∴∠α+180°-∠1=∠C+180°-∠2,∴∠2=90°+∠1-∠α.故答案为∠2=90°+∠1-∠α点睛:本题考查了三角形内角和定理和外角的性质、对顶角相等的性质,熟练掌握三角形外角的性质是解决问题的关键.26.(1)见详解;(2)15°;(3)67.5°;(4)45cm;(5)10s或30s或40s【分析】(1)运用角平分线定义及平行线性质即可证得结论;(2)如图2,过点E作EK∥MN,利用平行线性解析:(1)见详解;(2)15°;(3)67.5°;(4)45cm;(5)10s或30s或40s【分析】(1)运用角平分线定义及平行线性质即可证得结论;(2)如图2,过点E作EK∥MN,利用平行线性质即可求得答案;(3)如图3,分别过点F、H作FL∥MN,HR∥PQ,运用平行线性质和角平分线定义即可得出答案;(4)根据平移性质可得D′A=DF,DD′=EE′=AF=5cm,再结合DE+EF+DF=35cm,可得出答案;(5)设旋
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度幼儿园儿童床垫定制采购合同3篇
- 2025年度人工智能教育培训合作合同7篇
- 2025年厂房钢结构工程环保验收与监测合同4篇
- 2024铁路消防安全管理与应急预案合同3篇
- 2025年度健康生活APP定制化功能开发合同3篇
- 「可靠」2024年度广告位租赁合同3篇
- 2025年度科技园区场地租赁与合作开发合同范本4篇
- 2024版建筑渣土清运协议样本版
- 2025年度新能源车辆充电设施安装与维护合同3篇
- 2025年度叉车司机安全操作与事故责任认定合同4篇
- 银行信息安全保密培训
- 市政道路工程交通疏解施工方案
- 2024年部编版初中七年级上册历史:部分练习题含答案
- 拆迁评估机构选定方案
- 床旁超声监测胃残余量
- 上海市松江区市级名校2025届数学高一上期末达标检测试题含解析
- 综合实践活动教案三上
- 《新能源汽车电气设备构造与维修》项目三 新能源汽车照明与信号系统检修
- 2024年新课标《义务教育数学课程标准》测试题(附含答案)
- 医院培训课件:《静脉中等长度导管临床应用专家共识》
- 中国国际大学生创新大赛与“挑战杯”大学生创业计划竞赛(第十一章)大学生创新创业教程
评论
0/150
提交评论