普通陀螺仪和光纤陀螺_第1页
普通陀螺仪和光纤陀螺_第2页
普通陀螺仪和光纤陀螺_第3页
普通陀螺仪和光纤陀螺_第4页
普通陀螺仪和光纤陀螺_第5页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

普通陀螺仪和光纤陀螺一、概述绕一个支点高速转动的刚体称为陀螺。通常所说的陀螺是特指对称陀螺,它是一个质量均匀分布的,具有轴对称形状的刚体,其儿何对称轴就是它的自转轴,而现在一般将能够测量相对惯性空间的角速度和角位移的装置称为陀螺。陀螺是一种即使无外界参考信号也能探测出运载体本身姿态和状态变化的内部传感器,其功能是测量运动体的角度、角速度和角加速度。陀螺仪有两大特性,即定轴性和进动性。利用这两个特性就可在导弹等运载器的飞行过程中建立不变的基准,从而测量出运动体的姿态角和角速度。同时由加速度计测出其线加速度,经过必要的积分运算和坐标变换,确定弹(箭)相对于基准坐标系的瞬时速度和位置。也就是说,可以利用陀螺的特性建立一个相对惯性空间的人工参考坐标系,通过陀螺仪和加速度计测出运载器(包括火箭、导弹、潜艇、远程飞机、宇航飞行器等)的旋转运动和直线运动信号,经计算机综合计算,并指令姿态控制系统和推进系统,实现运载器的完全自主导航。陀螺仪外形图陀螺仪外形图二、工作原理陀螺仪的原理就是,一个旋转物体的旋转轴所指的方向在不受外力影响时,是不会改变的。陀螺仪在工作时要给它一个力,使它快速旋转起來,一般能达到每分钟儿十万转,可以工作很长时间,然后用多种方法读取轴所指示的方向,并自动将数据信号传给控制系统。定轴性:当陀螺转子以高速旋转时,在没有任何外力矩作用在陀螺仪上时,陀螺仪的自转轴在惯性空间中的指向保持稳定不变,即指向一个固定的方向;同时反抗任何改变转子轴向的力量。这种物理现象称为陀螺仪的定轴性或稳定性。转子的转动惯量愈大,转子角速度愈大,稳定性愈好进动性:当转子高速旋转时,若外力矩作用于外环轴,陀螺仪将绕内环轴转动;若外力矩作用于内环轴,陀螺仪将绕外环轴转动。其转动角速度方向与外力矩作用方向互相垂直。这种特性,叫做陀螺仪的进动性。三、陀螺仪分类按照转子转动的自由度分成双自由度陀螺仪(也称三自由度陀螺仪)和单自由度陀螺仪(也称二自由度陀螺仪)。前者用于测定飞行器的姿态角,后者用于测定姿态角速度,因此常称单自由度陀螺仪为。但通常多按陀螺仪中所采用的支承方式分类。1・滚珠轴承自由陀螺仪它是经典的陀螺仪。利用滚珠轴承支承是应用最早、最广泛的支承方式。滚珠轴承靠直接接触,摩擦力矩大,陀螺仪的精度不高,漂移率为每小时儿度,但工作可靠,迄今还用在精度要求不高的场合。一个自由转子陀螺仪(双自由度陀螺仪)靠内环轴和外环轴角度传感元件可以测量两个姿态角。2.液浮陀螺仪乂称浮子陀螺。内框架(内环)和转子形成密封球形或圆柱形的浮子组件。转子在浮子组件内高速旋转,在浮子组件与壳体间充以浮液,用以产生所需要的浮力和阻尼。浮力与浮子组件的重量相等者,称为全浮陀螺;浮力小于浮子组件重量者称为半浮陀螺。由于利用浮力支承,摩擦力矩减小,陀螺仪的精度较高,但因不能定位仍有摩擦存在。为弥补这一不足,通常在液浮的基础上增加磁悬浮,即由浮液承担浮子组件的重量,而用磁场形成的推力使浮子组件悬浮在中心位置。此外,还可利用高速旋转的转子与内框架之间所形成的动压气膜支承转子,这种方式称为动压气浮支承。现代高精度的单自由度液浮陀螺常是液浮、磁浮和动压气浮并用的三浮陀螺仪。这种陀螺仪比滚珠轴承陀螺仪的精度高,漂移率为0.01度/时。但液浮陀螺仪要求较高的加工精度、严格的装配、精确的温控,因而成本较高静电陀螺仪乂称电浮陀螺。在金属球形空心转子的周圉装有均匀分布的高压电极,对转子形成静电场,用静电力支承高速旋转的转子。这种方式属于球形支承,转子不仅能绕自转轴旋转,同时也能绕垂直于自转轴的任何方向转动,故属自由转子陀螺仪类型。静电场仅有吸力,转子离电极越近吸力就越大,这就使转子处于不稳定状态。用一套支承电路改变转子所受的力,可使转子保持在中心位置。静电陀螺仪釆用非接触支承,不存在摩擦,所以精度很高,漂移率低达10〜10度/时。它不能承受较大的冲击和振动。它的缺点是结构和制造工艺复杂,成本较高。挠性陀螺仪转子装在弹性支承装置上的陀螺仪。在挠性陀螺仪中应用较广的是动力调谐挠性陀螺仪。它由内挠性杆、外挠性杆、平衡环、转子、驱动轴和电机等组成。它靠平衡环扭摆运动时产生的动力反作用力矩(陀螺力矩)來平衡挠性杆支承产生的弹性力矩,从而使转子成为一个无约束的自由转子,这种平衡就是调谐。挠性陀螺仪是60年代迅速发展起來的惯性元件,它因结构简单、精度高(与液浮陀螺相近)、成本低,在飞机和导弹上得到了广泛应用。激光陀螺仪它的结构原理与上面儿种陀螺仪完全不同。激光陀螺实际上是一种环形激光器,没有高速旋转的机械转子,但它利用激光技术测量物体相对于惯性空间的角速度,具有速率陀螺仪的功能。激光陀螺仪的结构和工作是:用热膨胀系数极小的材料制成三角形空腔。在空腔的各顶点分别安装三块反射镜,形成闭合光路。腔体被抽成真空,充以氨氛气,并装设电极,形成激光发生器。激光发生器产生两束射向相反的激光。当环形激光器处于静止状态时,两束激光绕行一周的光程相等,因而频率相同,两个频率之差(频差)为零,干涉条纹为零。当环形激光器绕垂直于闭合光路平面的轴转动时,与转动方向一致的那束光的光程延长,波长增大,频率降低;另一束光则相反,因而出现频差,形成干涉条纹。单位时间的干涉条纹数正比于转动角速度。激光陀螺的漂移率低达0.1〜0.01度/时,可靠性高,不受线加速度等的影响,已在飞行器的惯性导航中得到应用,是很有发展前途的新型陀螺仪。

6.光纤陀蝮仪第一代光学陀螺为激光陀螺,第二代光学陀螺是光纤陀螺。光纤陀螺仪按照工作原理來分,可以分为干涉式光纤陀螺仪(I.FOG)、谐振式光纤陀螺仪(R・FOG)和布里渊型光纤陀螺仪(B.FOG)。其中干涉型光纤陀螺仪研究开发最早,技术最为成熟,属于第一代光纤陀螺。光纤陀螺仪的基础是萨格奈克(Sagnac)效应。•萨格奈克效应萨格奈克效应首先由Sagnac于1903年首先发现。光纤陀螺基于萨格奈克(Sagnac)效应,也即当环形干涉仪旋转时,产生一个正比于旋转速率Q的相位差可以考虑一个简单的理想圆形光路的情形,进入该系统的光被分成两束反向传播光波,在同一光路中沿相反方向传播后,同相返回。当干涉仪旋转时,一个在惯性参照系中静止的观察者,看到光从M点进入干涉仪,并以相同的真空中的光速c沿两个相反方向传播;但是经过光纤环的传输时间t后,分束器己经移到M",观察者将会看到,与旋转同向的光波比反向的光波所经历的路程要长。两束光的相位之差和旋转角速度成正比,据此可以计算出圆盘转速。a)系统静止b)系统旋转a)系统静止b)系统旋转图2真空情形F"理想”圆形光路中的萨格奈克效应•干涉式光纤陀螺仪如下图所示,光纤陀螺仪在旋转过程中会使两束光产生相位差,根据相位差的大小可以换算出旋转速度。<t光源发岀的光经过耦合器后分为两束光,其中的一束光进入电光相位调制器(丫波导),经过Y波导的内部调巧后输出的两束光为满足光的相I条件,这两束光在光纤环中和向传播,感应外部的角速度运动•在探测器处检测[渺信号光强变化,经过光电信号处理转换Z后.形成闭环反馈电

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论