信号与系统课件_第1页
信号与系统课件_第2页
信号与系统课件_第3页
信号与系统课件_第4页
信号与系统课件_第5页
已阅读5页,还剩444页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

11.Signals

Signals:physicalphenomenaorphysicalquantities,whichchangewithtimeorspace.Functionsofoneormoreindependentvariables.example:x(t)

1)DefinitionandMathematicalRepresentationofSignals(信号的定义及其数学表示)AsimpleRCcircuit:2Aspeechsignal“Shouldwechase”这句话的声压随时间变化的波形3Apicture一幅黑白照片可用亮度随二维空间变化的函数来表示42)ClassificationofSignals(信号的分类)(1)

DeterminateandRandomSignalsAdeterminatesignal——x(t)能够用确定的时间函数表示。Arandomsignal——cannotfindafunctiontorepresentit不能用确定时间函数表示——干扰信号、噪声信号

5(2)

Continuous-timeandDiscrete-timeSignalscontinuous-timesignals’independentvariableiscontinuous:x(t)

对一切时间t(除有限个不连续点外)都有确定的函数值,这类信号就称为连续时间信号,简称连续信号。discrete-timesignalsaredefinedonlyatdiscretetimes(onlyforintegervaluesoftheindependentvariable):x[n]

仅在不连续的瞬间(仅在自变量的整数值上)有确定函数值

6RepresentingSignalsGraphically

0x(t)

tGraphicalrepresentationsof(a)continuous-timeand(b)discrete-timesignals(a)-2x[-1]x[0]x[4]-4-3-1012345x[n]

n(b)7(3)PeriodicandAperiodicSignals在较长时间内(严格地说,无始无终)每隔一定时间T(或整数N)按相同规律重复变化的信号叫周期信号。

Foracontinuous-timesignalx(t)

x(t)=x(t+mT),(m=0,+1,-1,+2,-2,……)

forallvaluesoft.

Foradiscrete-timesignalx[n]

x[n]=x[n+mN],(m=0,+1,-1,+2,-2,……)

forallvaluesofn.Inthiscase,wesaythatx(t)(x[n])isperiodicwithFundamentalPeriodT(N).

8Examplesofperiodicsignals:sin,cosetc.withtheirfundamentalperiodN0=39Example1.1Determinethefundamentalperiodofthesignalx(t)=2cos(10πt+1)-sin(4πt-1).Fromtrigonometry,weknowthatthefundamentalperiodofcos(10πt+1)isT1=1/5,andsin(4πt-1)isT2=1/2.Whataboutthefundamentalperiodofx(t)?TheanswerisifthereisarationalT,anditisthelowestcommonmultipleofT1andT2,thenwesaythatx(t)isperiodicwithfundamentalperiodT,orelse,x(t)isaperiodic.Forthex(t)inthisexample,thelowestcommonmultipleof0.2and0.5isunit1,anditisrational,sothatthefundamentalperiodofx(t)is1.10

(4)EnergyandPowerSignals

TheinstantaneouspowerisThetotalenergyisTheaveragepoweris11SignalEnergyandPower

A.Continuous-TimeSignalInstantaneousPower:Energyovert1

t

t2:TotalEnergy:AveragePower:12B.Discrete-TimeSignalInstantaneousPower:Energyovern1

n

n2:TotalEnergy:AveragePower:13Withthesedefinitions,wecanidentifythreeimportantclassesofsignals:

A.

FiniteEnergySignal:(P

0)Example:14B.

FinitePowerSignal:(E)Example:C.SignalswithneitherfinitetotalenergynorfiniteaveragepowerExample:15

3)TransformationsoftheIndependentVariableofSignals(信号的自变量的变换)(1)TimeShiftRightshift:x(t-t0)

x[n-n0](Delay)Leftshift:x(t+t0)

x[n+n0](Advance)当信号经不同路径传输时,所用时间不同,从而产生时移。如电视图像出现的重影是由于信号传输的时移造成。16TimeShift(Example)SignalTransformation17SignalTransformation(2)TimeReversalx(-t)

orx[-n]:Reflectionofx(t)orx[n]18SignalTransformation(3)TimeScalingx(at)orx[an]

(a>0)Stretchifa<1Compressedifa>1Example1.2Givenasignalx(-t/3+2),showninFig.(a),drawthegraphofx(t).如录像带慢放时,信号被展宽;快放时,信号被压缩;倒放时,则信号被反褶。190

12t(a)x(-t/3+2)1

-2/3-1/301x(t+2)x(t/3+2)

1

-2-1004/35/321x(t)201x(-t/3)-6-5-401x(t/3)045604/35/321x(t)0

12t(a)x(-t/3+2)1214)

EvenandOddSignals(偶信号与奇信号)Evensignal:x(-t)=x(t)orx[-n]=x[n]Oddsignal:x(-t)=-x(t)orx[-n]=-x[n]Even-OddDecomposition:or:x(t)=Ev{x(t)}+Od{x(t)}

evenpartofx(t)

oddpartofx(t)22Examples:235)SeveralBasicSignals(几种基本信号)

(1)Continuous-timeComplexExponentialandSinusoidalSignalsA.RealExponentialSignals

x(t)=Ceat(C,aarerealvalue)a>0a<024B.PeriodicComplexExponentialandSinusoidalSignals

(a)x(t)=ej

0t

(b)x(t)=Acos(

0t+

)

All

x(t)satisfyforx(t)=x(t+T),andT=2/

0,sox(t)isperiodic.Euler’sRelation(欧拉关系):

ej

0t=

cos0t+jsin0t

andcos0t=(ej

0t+

e-j

0t)/2

sin0t=(ej

0t-

e-j

0t)/2j

Wealsohave25C.GeneralComplexExponentialSignals

x(t)=Ceat,inwhichC=|C|ej

,a=r+j

0,so

Forr=0,therealandimaginarypartsofx(t)aresinusoidal;Forr>0(r<0),theycorrespondtosinusoidalsignalsmultipliedbyagrowing(decaying)exponetial.26Thedashedcurveistheenvelope(包络)fortheoscillatorcurve.

(a)Growingsinusoidalsignal,,r>0;(b)decayingsinusoid,,r<0.27(2)Discrete-timeComplexExponentialandSinusoidalSignals(sequences)A.RealExponentialSignalsRealExponentialSignal

x[n]=C

n

(a)

>1(b)0<<1(c)-1<<0(d)<-128B.SinusoidalSignalsComplexexponential:x[n]=ej

0n

=cos

0n+

jsin

0n

Sinusoidalsignal:

x[n]=cos(

0n+

)

29C.GeneralComplexExponentialSignalsComplexExponentialSignal:

x[n]=C

n

inwhichC=|C|ej

,

=|

|ej

0(polarform,极坐标),then

x[n]=|C||

|ncos(

0n+

)+j|C||

|nsin(

0n+

)30

(a)Growingsinusoidalsequence(b)Decayingsinusoidalsequence31(3)PeriodicityPropertiesofDiscrete-timeComplexExponentialsSampling:

Discrete-timesignalshavethreemajordifferencesfromitscontinuous-timepartner.Aretheythesame?No!

Forej

0t

,ithastwoproperties:Thelargerthemagnitudeof

0,thehigheristherateofoscillationinthesignal;ej

0tisperiodicforanyvalueof

0.32A.Fordiscrete-timecomplexexponentialsignals,weneedtoconsiderafrequencyintervalof2.(在考虑离散时间复指数时,仅需要在某一个2间隔内选择即可)

Thus,ej0nandej(0+

2)narethesamesignals.ej0n不具备随

0在数值上的增加而不断增加其振荡速率的特性!当

0从0开始增加,其振荡速率愈来愈快,直到

0=

,达到最大,若继续增加

0

,其振荡速率就下降,直到

0=2

时,又得到与

0=0时同样的效果(常数序列).33Lowestoscillationrate:Highestoscillationrate:34Continuous-time:ej

0t

,

T=2/

0Discrete-time:ej

0n

,N=?Calculateperiod:Bydefinition:ej

0n

=

ej

0(n+N)

thusej

0N

=1

or

0N=

2mSoN=

2m/

0

withintergerNConditionofperiodicity:2/0

isrational.B.Periodicityofej

0n

若2/0为一有理数,ej

0n就是周期的,否则就不是周期的.35C.FinitenumberofdistinctharmonicsForaperiodicsignalwithfundamentalperiodofN,ThereareonlyNdistinctperiodicexponentialsfordiscrete-timesignals.IntheContinuous-timecase,alloftheharmonicallyrelatedcomplexexponentialsaredistinct.36UnitSample(Impulse):UnitStepFunction:(4)TheDiscrete-TimeUnitImpulseandUnitStepSequences37Relationshipbetweenunitsampleandunitstepsequencetheunitsampleisthefirstdifferenceoftheunitstepsequencetheunitstepsequenceistherunningsumoftheunitsampleorhere38writeanydiscrete-timesignalintermsofdelayedunitsampleasSamplingPropertyofUnitSample39

UnitStepFunction:UnitImpulseFunction:(5)TheContinuous-TimeUnitStepandUnitImpulseFunctions40RelationBetweenUnitImpulseandUnitStep41Illustrationsofδ(t)

0ΔuΔ(t)t1

Continuousapproximationtotheunitstep,uΔ(t)

1/Δ

δΔ(t)

DerivativeofuΔ(t)δ(t)isthelimitofδΔ(t)asΔ→0.42propertiesof

δ(t)Samplingpropertyδ(t)

isaevenfunction:

Scalingproperty:δ(-t)=δ(t)

Why:43Example1.3Determineandsketchthefirstderivativeofthesignaldepictedinthefollowingfigure.-1x(t)t01241-1-21012444(1)Definition:

Interconnection(互联)ofComponent,device,subsystem….(Broadestsense广义)Aprocessinwhichsignalscanbetransformed.(Narrowsense狭义)Continuous-timesystem:bothinputsignalsandoutputsignalsarecontinuous-timesignalsDiscrete-timesystem:transformdiscrete-timeinputsintodiscrete-timeoutputs2.systems1)Continuous-TimeandDiscrete-TimeSystems45(2)RepresentationofSystemPictorialRepresentationContinuous-timesystem

x(t)y(t)Discrete-timesystem

x[n]Y[n]Relationbythenotation

46(3)SimpleExampleofsystemsExample1.8:RCCircuitinFigure1.1:Vc(t)

Vs(t)RCCircuit(System)

vs(t)vc(t)---LinearConstantCoefficientDifferentialEquation(微分方程)47BalanceinBank(System)

x[n]y[n]Example1.10:Balance(余额)inabankaccountfrommonthtomonth:balance(第n个月末的余额)---y[n]netdeposit(第n个月的净存款)---x[n]interest(利息)---1%soy[n]=y[n-1]+1%

y[n-1]+x[n]ory[n]-1.01y[n-1]=x[n]482)InterconnectionsofSystem(1)Series(cascade)interconnection(串联或级联)(2)Parallelinterconnection(并联)49Series-Parallelinterconnection(3)Feedbackinterconnection(反馈联结)50ExampleofFeedbackinterconnection513)

Basicpropertiesofsystems(Classifications)

(1)SystemswithandwithoutMemoryMemorylesssystem(无记忆系统):Itsoutputisdependentonlyontheinputatthesametime.Features:Nocapacitor,noconductor,nodelayer.Examplesofmemorylesssystem:

y(t)=C

x(t)ory[n]=C

x[n]Examplesofmemorysystem:ory[n]-0.5y[n-1]=2x[n]52(2)InvertibilityandInverseSystemsDefinition:

Asystemissaidtobeinvertible

ifdistinctinputsleadtodistinctoutputs.

Ifsystemisinvertable(可逆),thenaninversesystemexists.Aninversesystemcascaded(级联)withtheoriginalsystem,yieldsanoutputequaltotheinput.5354(3)Causality(因果性)Definition:AsystemiscausalIftheoutputatanytimedependsonlyonvaluesoftheinputatthepresenttimeandinthepast.Forcausalsystem,ifx(t)=0fort<t0,theremustbey(t)=0fort<t0.(nonanticipative(不可预测的))Memorylesssystemsarecausal.x(t)y(t)t1t255(4)Stability(稳定性)Definition:

Iftheinputtoastablesystemisbounded(i.e.,ifitsmagnitudedoesnotgrowwithoutbound),thentheoutputmustalsobebounded.Finiteinputleadtofiniteoutput:if|x(t)|<M,then|y(t)|<N.Examples:Stablependulum Motionofautomobile56x(t)y(t)x(t-t0)y(t-t0)(5)TimeInvariance(时不变性)Definition:

Asystemistimeinvariantifthebehaviorandcharacteristicsofthesystemarefixedovertime.Timeinvariantsystem:Continuous-time:Ifx(t)y(t),thenx(t-t0)

y(t-t0).Discrete-time:Ifx(n)y(n),thenx(n-n0)

y(n-n0).57(6)Linearity(线性)

Definition:Thesystempossessestheimportantpropertyofsuperposition:A.Additivityproperty:Theresponsetox1(t)+x2(t)isy1(t)+y2(t).B.Scalingorhomogeneityproperty:Theresponsetoax1(t)isay1(t).(whereaisanycomplexconstant,a0.)Continuous-time:Discrete-time:58Lx1(t)x2(t)y1(t)y2(t)ax1(t)x1(t)+x2(t)ax1(t)+bx2(t)ay1(t)y1(t)+y2(t)ay1(t)+by2(t)Representedinblock-diagram:594)LTISystem

(线性时不变系统)

LTIx(t)y(t)x(t-t0)ax(t)+bx(t-t0)y(t-t0)ay(t)+by(t-t0)LinearandTime-invariantsystemContinuous-time:Ifx1(t)y1(t),x2(t)y2(t),thenDiscrete-time:Ifx1(n)y1(n),x2(n)y2(n),then60Examples:1(Example1.12).Checkingthecausalityoftwosystems.ThefirstsystemisdefinedbyThesystemisnotcausal.

ThesecondsystemisdefinedbyCausal!

Itisimportanttodistinguishcarefullytheeffectsoftheinputfromthoseofanyotherfunctionsusedinthedefinitionofthesystem.2(

Example1.13).Checkthestabilityofthefollowingtwosystems3(Example1.15).Considerthetimeinvariancepropertyofthediscrete-timesystem61However,4.Considerasystemwhoseinputx[n]andoutputy[n]arerelatedbyThus,thesystemistime-varying.Todeterminewhetherornotthissystemislinear.Letx3[n]bealinearcombinationofx1[n]andx2[n]:Thus,thesystemisnonlinear.62SUMMARY1.Theconceptsofsignalsandsystems;2.Thegraphicalandmathematicalrepresentationsofsignals;3.Theclassificationsofsignals;4.Transformationsoftheindependentvariableofsignals;5.Theperiodicityofsignals;6.Severalbasicsignals;7.Interconnectionofsystems;8.Blockdiagramofsystems;9.Propertiesofsystems.63INTRODUCTION

LTIsystemspossessesthesuperpositionproperty.Representsignalsaslinearcombinationsofdelayedimpulses.Convolutionsumorconvolutionintegral.linearconstant-coefficientdifferenceordifferentialequations.641.Discrete-TimeLTI:ConvolutionSum1)TheRepresentationofDiscrete-timeSignalsinTermsofImpulses(Ch.2.1.1)2)TheDiscrete-timeUnitImpulseResponseofLTISystems(Ch.2.1.2)3)TheDiscrete-timeResponseofLTISystemstoanyInputSignal:ConvolutionSum651)TheRepresentationofDiscrete-timeSignalsinTermsofImpulsesIfx[n]=u[n],thenSiftingPropertyofUnitSample:1.Discrete-TimeLTI:ConvolutionSum662)TheDiscrete-timeUnitImpulseResponseofLTISystemsLTIx[n]=[n]y[n]=h[n]

UnitImpulseResponseh[n]:responseoftheLTIsystemtotheunitsampleδ[n].δ[n]→h[n]Whydoweneedit?673)TheDiscrete-timeResponseofLTISystemstoanyInputSignal:ConvolutionSumLTIx[n]y[n]=?Solution:Question:[n]h[n][n-k]h[n-k]x[k][n-k]x[k]h[n-k]Theresponsey[n]tox[n]istheweightedlinearcombinationofdelayedunitsampleresponses.68ConvolutionSumSoRepresentingtheconvolutionoperationsymbolicallyas:y[n]=x[n]*h[n]---ConvolutionSum

Thatis,theunitimpulseresponse--h[n]

canfullycharacterizeanLTIsystem.SummaryoncalculatingconvolutionsumTimeInversal: h[k]h[-k]TimeShift: h[-k]h[n-k]Multiplication: x[k]h[n-k]Summing:69Example2.1

ConsideraLTIsystemwithunitsampleresponseh[n]andinputx[n],asillustratedinFigure(a).Calculatetheconvolutionsum(convolution)ofthesetwosequencesgraphically.

nx[n]

012nh[n]-202(a)

122kx[k]

012kh[-k]-202

(b)22170kx[k]

0122kh[-k]-20221n=0kh[-1-k]-3-20121n=-1kh[1-k]-1012321n=171Example2.2

Consideraninputx[n]andaunitsampleresponseh[n]givenbyDetermineandplottheoutputUsingthegeometricalsumformulatoevaluatelastequation,wehave

72n……21y[n]732.Continuous-TimeLTI:ConvolutionIntegral1)TheRepresentationofContinuous-timeSignalsinTermsofImpulses(Ch.2.2.1)2)TheContinuous-timeUnitImpulseResponseofLTISystems(Ch.2.2.2)3)TheContinuous-timeResponseofLTISystemstoanyInputSignal:ConvolutionIntegral741)TheRepresentationofContinuous-timeSignalsinTermsofImpulsesDiscrete-time:Continuous-time:Why?t┉┉-Δ0Δ2ΔkΔ

┉x(t)Staircaseapproximationtoacontinuous-timesignalx(t)2.Continuous-TimeLTI:ConvolutionIntegral75Therefore:Whatisthis?DefineWehavetheexpression:as,thesummingapproachesanintegralandistheunitimpulsefunction

762)TheContinuous-timeUnitImpulseResponseofLTISystemsLTIx(t)=(t)y(t)=h(t)UnitImpulseResponseh(t)

:

theresponseoftheLTIsystemtotheinput.

3)TheContinuous-timeResponseofLTISystemstoanyInputSignal:ConvolutionIntegralLTIx(t)y(t)=?77Givetheastheresponseofacontinuous-timeLTIsystemtotheinput,thentheresponseofthesystemtopulseis

Thus,theresponse

toisAs,inaddition,thesummingbecomesanintegral.Therefore,---ConvolutionIntegral

78Representconvolutionintegraloftwosignalsx(t)andh(t)symbolicallyas:ConvolutionIntegralAcontinuous-timeLTIsystemiscompletelycharacterizedbyitsunitimpulseresponseh(t).ComputationofConvolutionIntegral:

TimeInversal:h()h(-)TimeShift:h(-)h(t-)Multiplication:x()h(t-)Integrating:79Example2.3

Considertheconvolutionofthefollowingtwosignals,whicharedepictedin(a):

2x(t)1h(t)

012t

0123t-1(a)

x(τ)h(-τ)-20123τ

t=0

x(τ)h(t-τ)-20123τt0<t<1Whent<1:x(τ)h(t-τ)=0So

80

x(τ)h(t-τ)-201t23τ1<t<2

x(τ)h(t-τ)-2012t3τ2<t<3

x(τ)h(t-τ)-20123t4τ3<t<481

x(τ)h(t-τ)-201234t5τ4<t<5

y(t)

0135τ-2

x(τ)

h(t-τ)-2012345tτ

t≥5Whent≥5:x(τ)h(t-τ)=0So

823.PropertiesofLTISystems1)TheCommutativeProperty(Ch.2.3.1)2)TheDistributiveProperty(Ch.2.3.2)3)TheAssociativeProperty(Ch.2.3.3)4)LTISystemwithandwithoutMemory(Ch.2.3.4)5)InvertibilityofLTIsystem(Ch.2.3.5)6)CausalityforLTIsystem(Ch.2.3.6)7)StabilityforLTIsystem(Ch.2.3.7)8)TheUnitStepResponseofLTIsystem(Ch.2.3.8)83h(t)orh[n]completelycharacterizesanLTIsystemWhatpropertyshouldh(t)orh[n]havefortheLTIsystemtobestable,causal,memorylessandinvertible?3.PropertiesofLTISystems841)TheCommutativePropertyDiscretetime:

x[n]*h[n]=h[n]*x[n]Continuoustime:x(t)*h(t)=h(t)*x(t)h(t)x(t)y(t)=x(t)*h(t)x(t)h(t)y(t)=h(t)*x(t)

2)TheDistributivePropertyDiscretetime:x[n]*{h1[n]+h2[n]}=x[n]*h1[n]+x[n]*h2[n]Continuoustime:

x(t)*{h1(t)+h2(t)}=x(t)*h1(t)+x(t)*h2(t)3.PropertiesofLTISystems85h1(t)+h2(t)x(t)y(t)=x(t)*{h1(t)+h2(t)}h1(t)x(t)y(t)=x(t)*h1(t)+x(t)*h2(t)h2(t)

3)TheAssociativePropertyDiscretetime:

x[n]*{h1[n]*h2[n]}={x[n]*h1[n]}*h2[n]Continuoustime:

x(t)*{h1(t)*h2(t)}={x(t)*h1(t)}*h2(t)86h1(t)*h2(t)x(t)y(t)=x(t)*{h1(t)*h2(t)}h1(t)x(t)y(t)=x(t)*h1(t)*h2(t)h2(t)4)LTISystemwithandwithoutMemoryMemorylesssystem:Discretetime:y[n]=kx[n],h[n]=?Continuoustime:y(t)=kx(t),h(t)=?k

(t)

x(t)y(t)=kx(t)=x(t)*k(t)k

[n]

x[n]y[n]=kx[n]=x[n]*k[n]875)InvertibilityofLTIsystemOriginalsystem:h(t)Reversesystem:h1(t)(t)

x(t)x(t)*(t)=x(t)So,fortheinvertiblesystem:

h(t)*h1(t)=(t)orh[n]*h1[n]=[n]h(t)

x(t)x(t)h1(t)

6)CausalityforLTIsystemDiscretetimesystemsatisfy:

h[n]=0forn<0Continuoustimesystemsatisfy:

h(t)=0fort<0Why?887)StabilityforLTIsystemDefinitionofstability:Everyboundedinputproducesaboundedoutput.If|x[n]|<B,thesufficientandnecessaryconditionfor|y[n]|<AisDiscretetimesystem:Continuoustimesystem:If|x(t)|<B,theconditionfor|y(t)|<Ais898)TheUnitStepResponseofLTIsystemTheunitstepresponse,s[n]ors(t),istheoutputofanLTIsystemwheninputx[n]=u[n]orx(t)=u(t).A.Thestepresponseofadiscrete-timeLTIsystemistherunningsumofitssampleresponse:B.Theimpulseresponseofadiscrete-timeLTIsystemisthefirstdifferenceofitsstepresponse:h[n]/h(t)

[n]/(t)h[n]/h(t)u[n]/u(t)s[n]=u[n]*h[n]/s(t)=u(t)*h(t)90C.Theunitstepresponseofacontinuous-timeLTIsystemistherunningintegralofitsimpulseresponse:D.Theunitimpulseresponseofacontinuous-timeLTIsystemisthefirstderivativeoftheunitstepresponse:E.Propertiesofconvolutionintegral:Derivativeproperty:Integralproperty:Combiningthetwoproperties,wehave914.CausalLTISystemsdescribedbyDifferentialandDifferenceEquations1)Continuous-timesystem:DifferentialEquation(Ch.2.4.1)2)Discrete-timesystem:DifferenceEquation(Ch.2.4.2)3)BlockDiagramRepresentations(Ch.2.4.3)92:inputsignal;

:outputsignal.

Ci(t)VsR+–1)Continuous-timesystem:DifferentialEquationLinearconstant-coefficientdifferentialequationLinearconstant-coefficientdifferential(difference)equation

providesanimplicit

relationshipbetweentheinputandoutputratherthananexplicitexpressionforthesystemoutputasafunctionoftheinput.4.CausalLTISystemsdescribedbyDifferentialandDifferenceEquations93Howtofindthesystemoutputgivenaninputsignal?naturalresponse

Forcedresponse

Wemustspecifyoneormoreauxiliaryconditionstosolveadifferential(difference)equation.Initialrest:foracausalLTIsystem,ifx(t)=0fort<t0,theny(t)mustalsoequal0fort<t0.Itisimportanttoemphasizethattheconditionofinitialrestdoesnotspecifyazeroinitialconditionatafixedpointintime,butratheradjuststhispointintimesothattheresponseiszerountiltheinputbecomesnonzero.Thus,ifx(t)=0fort≤t0foracausalLTIsystem,theny(t)=0fort≤t0,andwewouldusetheinitialconditiony(t0)=0tosolvefortheoutputfort>t0.94AgeneralNth-orderlinearconstant-coefficientdifferentialequation:orandinitialcondition:

y(t0),y’(t0),……,y(N-1)(t0)(Nvalues)ForacausalLTIsystem:952)Discrete-timesystem:DifferenceEquationAgeneralNth-orderlinearconstant-coefficientdifferenceequation:orandinitialcondition:

y[0],y[-1],……,y[-(N-1)](Nvalues)Underinitialrest,thesystemdescribedbylinearconstant-coefficientdifferential(difference)equationiscausalandLTI.96Generalsolutionstosuchdifferenceequations:laterinChapter5or10.

Secondresolution:(recursivemethod)Firstresolution:N

auxiliaryconditions:973)BlockDiagramRepresentations(1)Dicrete-timesystemBasicelements:A.AnadderB.MultiplicationbyacoefficientC.AnunitdelayFirst-orderdifferenceequation:

additiondelaymultiplication

98Example:y[n]+ay[n-1]=bx[n]

(2)Continuous-timesystemFirst-orderdifferentialequation:differentiationThreebasicelementsinblockdiagram:adder,multiplierandintegrator.99Example:y’(t)+ay(t)=bx(t)

Suchblockdiagramscanalsobedevelopedforhigherordersystems.1005.SingularityFunctions1)Theunitimpulseasanidealizedshortpulse(1)(2)Important:forsmallΔ,theybothbehavesthesamefromanLTIsystem,seeFigure2.34.1012)Definingtheunitimpulsethroughconvolution---Operationaldefinition(运算定义)Or,equivalently,Theprimaryimportanceoftheunitimpulseisnotwhatitisateachvalueoft,butratherwhatitdoesunderconvolution.1023)Differentiator,unitdoublet

(单位冲激偶)

103SUMMARY1.Arepresentationofanarbitrarydiscrete-timesignalasweightedsumsofshiftedunitsamples;2.Convolutionsumrepresentationfortheresponseofadiscrete-timeLTIsystems;3.Arepresentationofanarbitrarycontinuous-timesignalaweightedintegralsofshiftedunitimpulses;4.Convolutionintegralrepresentationforcontinuous-timeLTIsystems;1045.RelatingLTIsystemproperties,includingcausality,stability,tocorrespondingpropertiesoftheunitimpulse(sample)response;6.Someofthepropertiesofsystemsdescribedbylinearconstant-coefficientdifferential(difference)equations;7.Understandingoftheconditionofinitialrest.SUMMARY105INTRODUCTION

Representationofcontinuous-timeanddiscrete-timeperiodicsignals—Fourierseries.UseFouriermethodstoanalyzeandunderstandsignalsandLTIsystems.1061.TheResponseofLTISystemstoComplexExponentials

1)Importantconcept—signaldecomposition(1)basicsignals:possesstwopropertiesA.

Thesetofbasicsignalscanbeusedtoconstructabroadandusefulclassofsignals.

B.ItshouldbeconvenientforustorepresenttheresponseofanLTIsystemtoanysignalconstructedasalinearcombinationofthebasicsignals.(2)complexexponentialsignals

indiscretetime:

incontinuoustime:1072)TheResponseofanLTISys

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论