版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
陕西省西安市高新第一中学2024届高二上数学期末调研模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知数列通项公式,则()A.6 B.13C.21 D.312.函数在单调递增的一个必要不充分条件是()A. B.C. D.3.某市统计局网站公布了2017年至2020年该市政府部门网站的每年的两项访问量,数据如下:年度项目2017年2018年2019年2020年独立用户访问总量(单位:个)2512573924400060989网站总访问量(单位:次)23435370348194783219288下列表述中错误的是()A.2017年至2018年,两项访问量都增长幅度较大;B.2018年至2019年,两项访问量都有所回落;C.2019年至2020年,两项访问量都又有所增长;D.从数据可以看出,该市政府部门网站的两项访问量都呈逐年增长态势4.已知函数在定义域内单调递减,则实数的取值范围是()A. B.C. D.5.若圆与圆有且仅有一条公切线,则()A.-23 B.-3C.-12 D.-136.已知向量,,则下列向量中,使能构成空间的一个基底的向量是()A. B.C. D.7.已知抛物线过点,点为平面直角坐标系平面内一点,若线段的垂直平分线过抛物线的焦点,则点与原点间的距离的最小值为()A. B.C. D.8.正三棱锥的侧面都是直角三角形,,分别是,的中点,则与平面所成角的余弦值为()A. B.C. D.9.已知x,y是实数,且,则的最大值是()A. B.C. D.10.已知数列为等比数列,,则的值为()A. B.C. D.211.我们知道,偿还银行贷款时,“等额本金还款法”是一种很常见的还款方式,其本质是将本金平均分配到每一期进行偿还,每一期的还款金额由两部分组成,一部分为每期本金,即贷款本金除以还款期数,另一部分是利息,即贷款本金与已还本金总额的差乘以利率.自主创业的大学生张华向银行贷款的本金为48万元,张华跟银行约定,按照等额本金还款法,每个月还一次款,20年还清,贷款月利率为,设张华第个月的还款金额为元,则()A.2192 B.C. D.12.已知向量,,且,则值是()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知正四面体ABCD中,E,F分别是线段BC,AD的中点,点G是线段CD上靠近D的四等分点,则直线EF与AG所成角的余弦值为______14.过点的直线与双曲线交于两点,且点恰好是线段的中点,则直线的方程为___________.15.已知点,是椭圆内的两个点,M是椭圆上的动点,则的最大值为______16.如图所示,将若干个点摆成三角形图案,每条边(包括两个端点)有个点,相应的图案中点的个数记为,按此规律,则___________,___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)设椭圆的左、右焦点分别为,.点满足.(1)求椭圆的离心率;(2)设直线与椭圆相交于,两点,若直线与圆相交于,两点,且,求椭圆的方程.18.(12分)已知,,分别是锐角内角,,的对边,,.(1)求的值;(2)若的面积为,求的值.19.(12分)等比数列的各项均为正数,且,.(1)求数列的通项公式;(2)设,求数列前项和.20.(12分)已知公差不为0的等差数列,前项和为,首项为,且成等比数列.(1)求和;(2)设,记,求.21.(12分)在平面直角坐标系中,已知直线:(t为参数).以坐标原点O为极点,x轴正半轴为极轴建立极坐标系,曲线C的极坐标方程为(1)求曲线C的直角坐标方程;(2)设点M的直角坐标为,直线l与曲线C的交点为A,B,求的值22.(10分)已知圆M:的圆心为M,圆N:的圆心为N,一动圆与圆N内切,与圆M外切,动圆的圆心E的轨迹为曲线C(1)求曲线C的方程;(2)已知点,直线l与曲线C交于A,B两点,且,直线l是否过定点?若过定点,求出定点坐标;若不过定点,请说明理由
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】令即得解.【详解】解:令得.故选:C2、D【解析】求出导函数,由于函数在区间单调递增,可得在区间上恒成立,求出的范围,再根据充分必要条件的定义即可判断得解.【详解】由题得,函数在区间单调递增,在区间上恒成立,而在区间上单调递减,选项中只有是的必要不充分条件.选项AC是的充分不必要条件,选项B是充要条件.故选:D3、D【解析】根据表格数据,结合各选项的描述判断正误即可.【详解】A:2017年至2018年,两项访问量分别增长、,显然增长幅度相较于后两年是最大的,正确;B:2018年至2019年,两项访问量相较于2017年至2018年都有回落,正确;C:2019年至2020年,两项访问量分别增长、,正确;D:由B分析知,该市政府部门网站的两项访问量在2018年至2019年有回落,而不是逐年增长态势,错误.故选:D.4、D【解析】由题意转化为,恒成立,参变分离后转化为,求函数的最大值,即可求解.【详解】函数的定义域是,,若函数在定义域内单调递减,即在恒成立,所以,恒成立,即设,,当时,函数取得最大值1,所以.故选:D5、A【解析】根据两圆有且仅有一条公切线,得到两圆内切,从而可求出结果.【详解】因为圆,圆心为,半径为;圆可化为,圆心为,半径,又圆与圆有且仅有一条公切线,所以两圆内切,因此,即,解得.故选:A.6、D【解析】根据向量共面基本定理只需无解即可满足构成空间向量基底,据此检验各选项即可得解.【详解】因为,所以A中的向量不能与,构成基底;因为,所以B中的向量不能与,构成基底;对于,设,则,解得,,所以,故,,为共面向量,所以C中的向量不能与,构成基底;对于,设,则,此方程组无解,所以,,不共面,故D中的向量与,可以构成基底.故选:D7、B【解析】将点的坐标代入抛物线的方程,求出的值,可求得抛物线的方程,求出的坐标,分析可知点的轨迹是以点为圆心,半径为的圆,利用圆的几何性质可求得点与原点间的距离的最小值.【详解】将点的坐标代入抛物线的方程得,可得,故抛物线的方程为,易知点,由中垂线的性质可得,则点的轨迹是以点为圆心,半径为的圆,故点的轨迹方程为,如下图所示:由图可知,当点、、三点共线且在线段上时,取最小值,且.故选:B.8、C【解析】以P为原点,PA为x轴,PB为y轴,PC为z轴,建立空间直角坐标系,利用向量法能求出PB与平面PEF所成角的正弦值.【详解】∵正三棱锥的侧面都是直角三角形,E,F分别是AB,BC的中点,∴以P为原点,PA为x轴,PB为y轴,PC为z轴,建立空间直角坐标系,设,则,,,,,,,,设平面PEF的法向量,则,取,得,设PB与平面PEF所成角为,则,∴PB与平面PEF所成角的正弦值为.故选:C.9、D【解析】将方程化为圆的标准方程,则的几何意义是圆上一点与点连线的斜率,进而根据直线与圆相切求得答案.【详解】方程可化为,表示以为圆心,为半径的圆,的几何意义是圆上一点与点A连线的斜率,设,即,当此直线与圆相切时,斜率最大或最小,当切线位于切线AB时斜率最大.此时,,,所以的最大值为.故选:D10、B【解析】根据等比数列的性质计算.【详解】由等比数列的性质可知,且等比数列奇数项的符号相同,所以,即.故选:B11、D【解析】计算出每月应还的本金数,再计算第n个月已还多少本金,由此可计算出个月的还款金额.【详解】由题意可知:每月还本金为2000元,设张华第个月的还款金额为元,则,故选:D12、A【解析】求出向量,的坐标,利用向量数量积坐标表示即可求解.【详解】因为向量,,所以,,因为,所以,解得:,故选:A.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】建立空间直角坐标系,令正四面体的棱长为,即可求出点的坐标,从而求出异面直线所成角的余弦值;【详解】解:如图建立空间直角坐标系,令正四面体的棱长为,则,所以,所以,所以,,,,,设,因为,所以,所以,所以,,设直线与所成角为,则故答案为:14、【解析】设,,,,分别代入双曲线方程,两式相减,化简可得:,结合中点坐标公式求得直线的斜率,再利用点斜式即可求直线方程【详解】过点的直线与该双曲线交于,两点,设,,,,,两式相减可得:,因为为的中点,,,,则,所以直线的方程为,即为故答案为:【点睛】方法点睛:对于有关弦中点问题常用“点差法”,其解题步骤为:①设点(即设出弦的两端点坐标);②代入(即代入圆锥曲线方程);③作差(即两式相减,再用平方差公式分解因式);④整理(即转化为斜率与中点坐标的关系式),然后求解.15、##【解析】结合椭圆的定义求得正确答案.【详解】依题意,椭圆方程为,所以,所以是椭圆的右焦点,设左焦点为,根据椭圆的定义可知,,所以的最大值为.故答案为:16、①.②.【解析】利用题中所给规律求出即可.【详解】解:由图可知,,,,,因为符合等差数列的定义且公差为所以,所以,故答案为:,.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)【解析】(1)由及两点间距离公式可建立等式,消去b,即可求解出,主要两个根的的要舍去;(2)联立直线和椭圆的方程,利用弦长公式求得,再利用几何关系求得,代入,可解得c,从而得到椭圆的方程.【详解】(1)设,,因为,所以,整理得,得(舍),或,所以;(2)由(1)知,,可得椭圆方程为,直线的方程为,A,B两点的坐标满足方程组为,消去y并整理,得,解得:,,得方程组的解和,不妨设:,,所以,于是,圆心到直线的距离为,因为,所以,整理得:,得(舍),或,所以椭圆方程为:.【点睛】关键点点睛:本题考查求椭圆的离心率解题关键是找到关于a,b,c的等量关系,第二问的关键是联立直线与椭圆方程求出交点坐标,利用距离公式建立等量关系,求出c是求出椭圆方程的关键.18、(1);(2)4.【解析】(1)由正弦定理即可得答案.(2)根据题意得到,再由关于角的余弦定理和整理化简得,再由的面积,即可求出的值.【小问1详解】由及正弦定理可得.【小问2详解】由锐角中得,根据余弦定理可得,代入得,整理得,即,解得,,解得.19、(1);(2).【解析】(1)根据题意求出首项和公比即可得出通项公式;(2)可得是等差数列,利用等差数列前n项和公式即可求出.【详解】解:(1)设等比数列的公比为,则,由题意得,解得,因此,;(2),则,所以,数列是等差数列,首项,记数列前项和为,则.20、(1)(2)【解析】(1)由题意解得等差数列的公差,代入公式即可求得和;(2)把n分为奇数和偶数两类,分别去数列的前n项和.【小问1详解】设等差数列公差为,由题有,即,解之得或0,又,所以,所以.【小问2详解】,当为正奇数,,当为正偶数,,所以21、(1)(2)【解析】【小问1详解】由,得.两边同乘,即.由,得曲线的直角坐标方程为【小问2详解】将代入,得,设A,B对应的参数分别为则所以.由参数的几何意义得22、(1),;(2)过,.【解析】(1)根据两圆内切和外切的性质,结合
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 初中总务处一周工作计划
- 产教融合、医教协同下师资队伍建设的困境及优化路径
- 设备维修管理制度(完整版)
- 下月工作计划怎么写7篇
- 山东省滕州市2023-2024学年高三物理上学期期中试题含解析
- 中职体育教师教学工作心得范文5篇
- 七年级语文上册 8《世说新语》两则第1课时教学实录 新人教版
- 云南省个旧市第十中学九年级化学下册 第十单元 课题1 常见的酸和碱教学实录 新人教版
- 《美人鱼》观后感(集合15篇)
- 个人自我鉴定(集合15篇)
- 四川省成都市锦江区嘉祥外国语学校2024-2025学年九年级上学期入试考试数学试题
- 2024-2030年中国压电薄膜传感器行业市场发展趋势与前景展望战略分析报告
- TSG+23-2021气瓶安全技术规程
- 期末试卷(试题)-2024-2025学年三年级上册数学人教版
- 新外研版高中英语必修1单词正序英汉互译默写本
- 媒介审判完整版本
- 水生生物学智慧树知到期末考试答案章节答案2024年宁波大学
- 2024北京市《安全员》C证考试题库及参考答案一套
- 社区矫正专业人员的培训
- 安全隐患规范依据查询手册22大类12万字
- 智慧传承-黎族船型屋智慧树知到期末考试答案章节答案2024年海南师范大学
评论
0/150
提交评论