版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
四川省阆中中学2024届高二上数学期末综合测试模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知直线过点,,则该直线的倾斜角是()A. B.C. D.2.某地为应对极端天气抢险救灾,需调用A,B两种卡车,其中A型卡车x辆,B型卡车y辆,以备不时之需,若x和y满足约束条件则最多需调用卡车的数量为()A.7 B.9C.13 D.143.如图,在四棱锥中,平面,底面是正方形,,则下列数量积最大的是()A. B.C. D.4.已知空间向量,,且,则的值为()A. B.C. D.5.已知椭圆的左,右焦点分别为,,直线与C交于点M,N,若四边形的面积为且,则C的离心率为()A. B.C. D.6.双曲线的左顶点为,右焦点,若直线与该双曲线交于、两点,为等腰直角三角形,则该双曲线离心率为()A. B.C. D.7.双曲线:的左、右焦点分别为、,过的直线与y轴交于点A、与双曲线右支交于点B,若为等边三角形,则双曲线C的离心率为()A. B.C.2 D.8.已知椭圆,则它的短轴长为()A.2 B.4C.6 D.89.设圆:和圆:交于A,B两点,则线段AB所在直线的方程为()A. B.C. D.10.设等差数列的前项和为,已知,,则的公差为()A.2 B.3C.4 D.511.在直角坐标系中,直线的倾斜角是A.30° B.60°C.120° D.150°12.设,若,则()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.设函数f(x)在R上满足f(x)+xf′(x)>0,若a=(30.3)f(30.3),b=(logπ3)·f(logπ3),则a与b的大小关系为________14.椭圆x2+=1上的点到直线x+y-4=0的距离的最小值为_________.15.已知几何体如图所示,其中四边形ABCD,CDGF,ADGE均为正方形,且边长为1,点M在DG上,若直线MB与平面BEF所成的角为45°,则___________.16.在平面直角坐标系中,已知双曲线的左,右焦点分别为,,过且与圆相切的直线与双曲线的一条渐近线相交于点(点在第一象限),若,则双曲线的离心率___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知点,直线:,直线m过点N且与垂直,直线m交圆于两点A,B.(1)求直线m的方程;(2)求弦AB的长.18.(12分)求下列函数导数:(1);(2);19.(12分)在直角坐标系中,点到两点、的距离之和等于,设点的轨迹为,直线与交于、两点(1)求曲线的方程;(2)若,求的值20.(12分)在下列所给的三个条件中任选一个,补充在下面问题中,并完成解答(若选择多个条件分别解答,则按第一个解答计分).①与直线平行;②与直线垂直;③直线l的一个方向向量为;已知直线l过点,且___________.(1)求直线l的一般方程;(2)若直线l与圆C:相交于M,N两点,求弦长.21.(12分)给定函数.(1)判断函数f(x)的单调性,并求出f(x)的极值;(2)画出函数f(x)的大致图象,无须说明理由(要求:坐标系中要标出关键点);(3)求出方程的解的个数.22.(10分)2021年7月25日,在东京奥运会自行车公路赛中,奥地利数学女博士安娜·基秣崔天以3小时52分45秒的成绩获得冠军,震惊了世界!广大网友惊呼“学好数理化,走遍天下都不怕”.某市对中学生的体能测试成绩与数学测试成绩进行分析,并从中随机抽取了200人进行抽样分析,得到下表(单位:人):体能一般体能优秀合计数学一般5050100数学优秀4060100合计90110200(1)根据以上数据,能否在犯错误的概率不超过0.10的前提下认为“体能优秀”还是“体能一般”与数学成绩有关?(结果精确到小数点后两位)(2)①现从抽取的数学优秀的人中,按“体能优秀”与“体能一般”这两类进行分层抽样抽取10人,然后,再从这10人中随机选出4人,求其中至少有2人是“体能优秀”的概率;②将频率视为概率,以样本估计总体,从该市中学生中随机抽取10人参加座谈会,记其中“体能优秀”的人数为X,求X的数学期望和方差参考公式:,其中参考数据:0.150.100.050.250.0102.0722.7063.8415.0246.635
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】根据直线的斜率公式即可求得答案.【详解】设该直线的倾斜角为,该直线的斜率,即.故选:C2、B【解析】画出约束条件的可行域,利用目标函数的几何意义即可求解【详解】设调用卡车的数量为z,则,其中x和y满足约束条件,作出可行域如图所示:当目标函数经过时,纵截距最大,最大.故选:B3、B【解析】设,根据线面垂直的性质得,,,,根据向量数量积的定义逐一计算,比较可得答案.【详解】解:设,因为平面,所以,,,,又底面是正方形,所以,,对于A,;对于B,;对于C,;对于D,,所以数量积最大的是,故选:B.4、B【解析】根据向量垂直得,即可求出的值.【详解】.故选:B.5、A【解析】根据题意可知四边形为平行四边形,设,进而得,根据四边形面积求出点M的坐标,再代入椭圆方程得出关于e的方程,解方程即可.【详解】如图,不妨设点在第一象限,由椭圆的对称性得四边形为平行四边形,设点,由,得,因为四边形的面积为,所以,得,由,得,解得,所以,即点,代入椭圆方程,得,整理得,由,得,解得,由,得.故选:A6、A【解析】求出,分析可得,可得出关于、、的齐次等式,由此可求得该双曲线的离心率的值.【详解】联立,可得,则,易知点、关于轴对称,且为线段的中点,则,又因为为等腰直角三角形,所以,,即,即,所以,,可得,因此,该双曲线的离心率为.故选:A.7、B【解析】由双曲线的定义知,,又为等边三角形,所以,由对称性有,所以,在直角三角形中,求出,在三角形中,由余弦定理求出,从而即可求解.【详解】解:由双曲线的定义知,,又为等边三角形,所以,由对称性有,所以,在直角三角形中,,在三角形中,由余弦定理有,所以,解得,所以双曲线C的离心率,故选:B.8、B【解析】根据椭圆短轴长的定义进行求解即可.【详解】由椭圆的标准方程可知:,所以该椭圆的短轴长为,故选:B9、A【解析】将两圆的方程相减,即可求两圆相交弦所在直线的方程.【详解】设,因为圆:①和圆:②交于A,B两点所以由①-②得:,即,故坐标满足方程,又过AB的直线唯一确定,即直线的方程为.故选:A10、B【解析】由以及等差数列的性质,可得的值,再结合即可求出公差.【详解】解:,得,,又,两式相减得,则.故选:B.11、D【解析】根据直线方程得到直线的斜率后可得直线的倾斜角.【详解】设直线的倾斜角为,则,因,故,故选D.【点睛】直线的斜率与倾斜角的关系是:,当时,直线的斜率不存在,注意倾斜角的范围.12、B【解析】先求出,再利用二倍角公式、和差角公式即可求解.【详解】因为,且,所以.所以,,所以.故选:B二、填空题:本题共4小题,每小题5分,共20分。13、a>b【解析】构造函数F(x)=xf(x),利用F(x)的单调性求解即可.【详解】设函数F(x)=xf(x),∴F′(x)=f(x)+xf′(x)>0,∴F(x)=xf(x)在R上为增函数,又∵30.3>1,logπ3<1,∴30.3>logπ3,∴F(30.3)>F(logπ3),∴(30.3)f(30.3)>(logπ3)f(logπ3),∴a>b.故答案为:a>b.14、【解析】设与直线x+y-4=0平行的直线方程为,求出即得解.【详解】解:设与直线x+y-4=0平行的直线方程为,所以,代入椭圆方程得,令或.当时,平行线间的距离为;当时,平行线间的距离为.所以最小距离为.故答案为:.15、##【解析】把该几何体补成一个正方体,如图,利用正方体的性质证明面面垂直得出直线MB与平面BEF所成的角,然后计算可得【详解】把该几何体补成一个正方体,如图,,连接,由平面,平面,得,同理,又正方形中,,,平面,所以平面,而平面,所以平面平面,所以平面内的直线在平面上的射影是,即是直线MB与平面BEF所成的角,,,,故答案为:16、2【解析】设切点,根据,可得,在中,利用余弦定理构造齐次式,从而可得出答案.【详解】解:设切点,由,∴,∵为中点,则为中位线,∴,,中,,,,∴.故答案为:2.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)求出斜率,用点斜式求直线方程;(2)利用垂径定理求弦长.【小问1详解】因为直线:,所以直线的斜率为.因为直线m过点N且与垂直,所以直线的斜率为,又过点,所以直线:,即【小问2详解】直线与圆相交,则圆心到直线的距离为:,圆的半径为,所以弦长18、(1);(2)【解析】根据基本初等函数的导数公式以及导数的运算法则计算可得;【详解】解:(1)因为所以,即(2)因为所以,即19、(1);(2).【解析】(1)本题可根据椭圆的定义求出点的轨迹;(2)本题首先可设、,然后联立椭圆与直线方程,通过韦达定理得出、,最后通过得出,代入、的值并计算,即可得出结果.【详解】(1)因为点到两点、的距离之和等于,所以结合椭圆定义易知,点的轨迹是以点、为焦点且的椭圆,则,,,点的轨迹.(2)设,,联立,整理得,则,,因为,所以,即,整理得,则,整理得,解得.【点睛】关键点点睛:本题考查根据椭圆定义求动点轨迹以及直线与抛物线相关问题的求解,椭圆的定义为动点到两个定点的距离为一个固定的常数,考查韦达定理的应用,考查计算能力,是难题.20、(1)若选择①②,则直线方程为:;若选择③,则直线方程为;(2)若选择①②,则;若选择③,则.【解析】(1)根据所选择的条件,结合直线过点,即可写出直线的方程;(2)利用(1)中所求直线方程,以及弦长公式,即可求得结果.【小问1详解】若选①与直线平行,则直线的斜率;又其过点,故直线的方程为,则其一般式为;若选②与直线垂直,则直线的斜率满足,解得;又其过点,故直线的方程为,则其一般式为;若选③直线l的一个方向向量为,则直线的斜率;又其过点,故直线的方程为,则其一般式为;综上所述:若选择①②,则直线方程为:;若选择③,则直线方程为.【小问2详解】对圆C:,其圆心为,半径,根据(1)中所求,若选择①②,则直线方程为,则圆心到直线的距离,则直线截圆所得弦长;若选择③,则直线方程为,则圆心到直线的距离,则直线截圆所得弦长.综上所述,若选择①②,则;若选择③,则.21、(1)函数的减区间为,增区间为,有极小值,无极大值;(2)具体见解析;(3)具体见解析.【解析】(1)对函数求导,进而求出单调区间和极值;(2)结合(1),并代入几个特殊点,再结合函数的变化趋势作出图象;(3)结合(2),采用数形结合的方法求得答案.【小问1详解】,时,,单调递减,时,,单调递增,故函数在x=-1处取得极小值为,无极大值.【小问2详解】作图说明:由(1)可知函数先减后增,有极小值;描出极小值点,原点和点(1,e);当时,函数增加得越来越快,当时,函数越来越接近于0.【小问3详解】结合图象可知,若,则方程有0个解;若,则方程有2个解;若或,则方程有1个解.22、(1)不能,理由见解析;(2)①,②,【解析】(1)运用公式求出,比较得出结论.(2)①先
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度年福建省高校教师资格证之高等教育法规押题练习试题B卷含答案
- 2024年无线呼叫器项目资金需求报告代可行性研究报告
- 2024年煤制合成氨项目资金需求报告代可行性研究报告
- 三年级数学计算题专项练习及答案集锦
- 视觉、情感与认同:视听综艺节目的文化认同建构路径
- 牛津译林版英语高一上学期期末试题及答案指导
- 2024年桥梁建设协议格式实例
- 二手房经纪服务个性化协议样本
- 2024年非全日制员工协议示范文本
- 2024年试用期间协议期限规定详解
- 清华微观经济学课件微观经济学
- 污水源热泵方案
- 完整版江苏省政府采购专家库入库考试题库(1-4套卷)
- 骨科利用PDCA循环提高骨科预防深静脉血栓措施落实率品管圈QCC成果汇报
- 25题内控合规岗位常见面试问题含HR问题考察点及参考回答
- 全科医生临床常见病门急诊病历模板(范例)
- 工程流体力学名词解释和简答题-大全
- 变电站安装工程质量通病及处理措施
- 山东省招远市2023-2024学年六年级(五四制)上学期期中地理试题
- 安全生产企业负责人五带头的内容
- 第6课数据整理 课件(共14张PPT) 浙教版(2023)信息科技四年级上册
评论
0/150
提交评论