四川省雅安市雨城区雅安中学2024届高二数学第一学期期末检测模拟试题含解析_第1页
四川省雅安市雨城区雅安中学2024届高二数学第一学期期末检测模拟试题含解析_第2页
四川省雅安市雨城区雅安中学2024届高二数学第一学期期末检测模拟试题含解析_第3页
四川省雅安市雨城区雅安中学2024届高二数学第一学期期末检测模拟试题含解析_第4页
四川省雅安市雨城区雅安中学2024届高二数学第一学期期末检测模拟试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

四川省雅安市雨城区雅安中学2024届高二数学第一学期期末检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.过点且斜率为的直线方程为()A. B.C D.2.已知向量,,且,则实数等于()A1 B.2C. D.3.若展开式的二项式系数之和为,则展开式的常数项为()A. B.C. D.4.直线的倾斜角的大小为A. B.C. D.5.第届全运会于年月在陕西西安顺利举办,其中水上项目在西安奥体中心游泳跳水馆进行,为了应对比赛,大会组委会将对泳池进行检修,已知泳池深度为,其容积为,如果池底每平方米的维修费用为元,设入水处的较短池壁长度为,且据估计较短的池壁维修费用与池壁长度成正比,且比例系数为,较长的池壁维修费用满足代数式,则当泳池的维修费用最低时值为()A. B.C. D.6.函数f(x)=xex的单调增区间为()A.(-∞,-1) B.(-∞,e)C.(e,+∞) D.(-1,+∞)7.如图,在四面体中,,,,,为线段的中点,则等于()A B.C. D.8.等差数列前项和,已知,,则的值是().A. B.C. D.9.已知双曲线,过其右焦点作渐近线的垂线,垂足为,延长交另一条渐近线于点A.已知为原点,且,则()A. B.C. D.10.命题P:ax2+2x﹣1=0有实数根,若¬p是假命题,则实数a的取值范围是()A.{a|a<1} B.{a|a≤﹣1}C.{a|a≥﹣1} D.{a|a>﹣1}11.曲线与曲线的()A.实轴长相等 B.虚轴长相等C.焦距相等 D.渐进线相同12.在中,内角所对的边为,若,,,则()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.唐代诗人李颀的诗《古从军行》开头两句说:“白日登山望烽火,黄昏饮马傍交河.”诗中隐含着一个有趣的数学问题——“将军饮马”,即将军在观望烽火之后从山脚下某处出发,先到河边饮马再回到军营,怎样走才能使总路程最短?在如图所示的直角坐标系xOy中,设军营所在平面区域为{(x,y)|x2+y2≤},河岸线所在直线方程为x+2y-4=0.假定将军从点P(,)处出发,只要到达军营所在区域即回到军营,当将军选择最短路程时,饮马点A的纵坐标为______.最短总路程为______14.在不等边△ABC(三边均不相等)中,三个内角A,B,C所对的边分别为a,b,c,且有,则角C的大小为________15.若函数恰有两个极值点,则k的取值范围是______16.已知向量,,且,则实数______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知椭圆,离心率分别为左右焦点,椭圆上一点满足,且的面积为1.(1)求椭圆的标准方程;(2)过点作斜率为的直线交椭圆于两点.过点且平行于的直线交椭圆于点,证明:为定值.18.(12分)已知在长方形ABCD中,AD=2AB=2,点E是AD的中点,沿BE折起平面ABE,使平面ABE⊥平面BCDE.(1)求证:在四棱锥A-BCDE中,AB⊥AC.(2)在线段AC上是否存在点F,使二面角A-BE-F的余弦值为?若存在,找出点F的位置;若不存在,说明理由.19.(12分)已知向量,,且.(1)求满足上述条件的点M(x,y)的轨迹C的方程;(2)设曲线C与直线y=kx+m(k≠0)相交于不同的两点P,Q,点A(0,1),当|AP|=|AQ|时,求实数m的取值范围.20.(12分)在平面直角坐标系中,双曲线的左、右两个焦点为、,动点P满足(1)求动点P的轨迹E的方程;(2)设过且不垂直于坐标轴的动直线l交轨迹E于A、B两点,问:线段上是否存在一点D,使得以DA、DB为邻边的平行四边形为菱形?若存在,请给出证明:若不存在,请说明理由21.(12分)已知抛物线,过焦点的直线l交抛物线C于M、N两点,且线段中点的纵坐标为2(1)求直线l的方程;(2)设x轴上关于y轴对称的两点P、Q,(其中P在Q的右侧),过P的任意一条直线交抛物线C于A、B两点,求证:始终被x轴平分22.(10分)已知公差不为零的等差数列的前项和为,,,成等比数列且满足________.请在①;②;③,这三个条件中任选一个补充在上面题干中,并回答以下问题.(1)求数列的通项公式;(2)设,求数列的前项和.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】利用点斜式可得出所求直线的方程.【详解】由题意可知所求直线的方程为,即.故选:B.2、C【解析】利用空间向量垂直的坐标表示计算即可得解【详解】因向量,,且,则,解得,所以实数等于.故选:C3、C【解析】利用二项式系数的性质求得的值,再利用二项式展开式的通项公式,求得结果即可.【详解】解:因为展开式的二项式系数之和为,则,所以,令,求得,所以展开式的常数项为.故选:C.4、A【解析】考点:直线的倾斜角专题:计算题分析:因为直线的斜率是倾斜角的正切值,所以欲求直线的倾斜角,只需求出直线的斜率即可,把直线化为斜截式,可得斜率,问题得解解答:解:∵x-y+1=0可化为y=x+,∴斜率k=设倾斜角为θ,则tanθ=k=,θ∈[0,π)∴θ=故选A点评:本题主要考查了直线的倾斜角与斜率之间的关系,属于直线方程的基础题型,需要学生对基础知识熟练掌握5、A【解析】根据题意得到泳池维修费用的的解析式,再利用导数求出最值即可【详解】解:设泳池维修的总费用为元,则由题意得,则,令,解得,当时,;当时,,故当时,有最小值因此,当较短池壁为时,泳池的总维修费用最低故选A6、D【解析】求出,令可得答案.【详解】由已知得,令,得,故函数f(x)=xex的单调增区间为(-1,+∞).故选:D.7、D【解析】根据空间向量的线性运算求解【详解】由已知,故选:D8、C【解析】由题意,设等差数列的公差为,则,故,故,故选9、C【解析】画出图象,结合渐近线方程得到,,进而得到,结合渐近线的斜率及角度关系,列出方程,求出,从而求出.【详解】渐近线为,如图,过点F作FB垂直于点B,交于点A,则到渐近线距离为,则,又,由勾股定理得:,则,又,,所以,解得:,所以.故选:C10、C【解析】根据是假命题,判断出是真命题.对分成,和两种情况,结合方程有实数根,求得的取值范围.详解】┐p是假命题,则p是真命题,∴ax2+2x﹣1=0有实数根,当a=0时,方程为2x﹣1=0,解得x=0.5,有根,符合题意;当a≠0时,方程有根,等价于△=4+4a≥0,∴a≥﹣1且,综上所述,a的可能取值为a≥﹣1故选:C【点睛】本小题主要考查根据命题否定的真假性求参数,属于基础题.11、D【解析】将曲线化为标准方程后即可求解.【详解】化为标准方程为,由于,则两曲线实轴长、虚轴长、焦距均不相等,而渐近线方程同为.故选:12、B【解析】利用正弦定理角化边得到,再利用余弦定理构造方程求得结果.【详解】,,由余弦定理得:,,.故选:B.二、填空题:本题共4小题,每小题5分,共20分。13、①.②.【解析】求出P(,)关于直线x+2y4=0对称点P'的坐标,再求出线段OP'与直线x+2y-4=0的交点A,再利用圆的几何性质可得结果.【详解】设P(,)关于直线x+2y4=0的对称点为P'(m,n),则解得因为从点P到军营总路程最短,所以A为线段OP'与直线x+2y4=0的交点,联立得y=(42y),解得y=.所以“将军饮马”的最短总路程为=,故答案为,.【点睛】本题主要考查对称问题以及圆的几何性质,属于中档题.解析几何中点对称问题,主要有以下三种题型:(1)点关于直线对称,关于直线的对称点,利用,且点在对称轴上,列方程组求解即可;(2)直线关于直线对称,利用已知直线与对称轴的交点以及直线上特殊点的对称点(利用(1)求解),两点式求对称直线方程;(3)曲线关于直线对称,结合方法(1)利用逆代法求解.14、【解析】由正弦定理可得,又,,,,,在三角形中,.考点:1正弦定理;2正弦的二倍角公式.15、【解析】求导得有两个极值点等价于函数有一个不等于1的零点,分离参数得,令,利用导数研究的单调性并作出的图象,根据图象即可得出k的取值范围【详解】函数的定义域为,,令,解得或,若函数有2个极值点,则函数与图象在上恰有1个横坐标不为1的交点,而,令,令或,故在和上单调递减,在上单调递增,又,如图所示,由图可得.故答案为:16、【解析】利用向量平行的条件直接解出.【详解】因为向量,,且,所以,解得.故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)证明见解析【解析】(1)方法一:根据离心率以及,可得出,将条件转化为点在以为直径的圆上,即为圆与椭圆的交点,将的面积用表示,求出,进而求出椭圆的标准方程;方法二:根据椭圆的定义,,再根据勾股定理和直角三角形的面积公式,即可解得,又由离心率求出,则可求出椭圆的标准方程;(2)设出直线的方程,代入椭圆方程,根据韦达定理表示出,再将直线的方程代入椭圆方程,求出,则为定值.【小问1详解】方法一:由离心率,得:,所以椭圆上一点,满足,所以点为圆:与椭圆的交点,联立方程组解得所以,解得:,所以椭圆的标准方程为:.方法二:由椭圆定义;,因为,所以,得到:,即,又,得所以椭圆C的标准方程为:;【小问2详解】设直线AB的方程为:.得设过点且平行于的直线方程:.18、(1)证明见解析(2)点F为线段AC的中点【解析】(1)由平面几何知识证得CE⊥BE,再根据面面垂直的性质,线面垂直的判定和性质可得证;(2)取BE的中点O,以O为原点,分别以的方向为x轴,y轴,z轴建立空间直角坐标系,假设在线段AC上存在点F,设=λ,运用二面角的向量求解方法可求得,可得点F的位置.【小问1详解】证明:因为在长方形ABCD中,AD=2AB=2,点E是AD的中点,所以BE=CE=2,又BC=2,所以,所以CE⊥BE,又平面ABE⊥平面BCDE,面面,所以CE⊥平面ABE,所以AB⊥CE.又AB⊥AE,,所以AB⊥平面AEC,即得AB⊥AC.【小问2详解】解:存在点F,F为线段AC的中点.由(1)得△ABE和△BEC均为等腰直角三角形,取BE的中点O,则,又平面ABE⊥平面BCDE,面面,所以面,以O为原点,分别以的方向为x轴,y轴,z轴建立空间直角坐标系,如图所示,取平面ABE的一个法向量为.假设在线段AC上存在点F,使二面角A-BE-F的余弦值为.则A(0,0,1),B(1,0,0),C(-1,2,0),E(-1,0,0),=(1,0,1),=(-1,2,-1),设=λ,则+λ=(1-λ,2λ,1-λ),又=(2,0,0),设平面BEF的法向量为,可得,即得,可取y=1,得,所以,解得λ=,即当点F为线段AC的中点时,二面角A-BE-F的余弦值为.19、(1)+y2=1;(2).【解析】(1)应用向量垂直的坐标表示得x2+3y2=3,即可写出M的轨迹C的方程;(2)由直线与曲线C交于不同的两点P(x1,y1),Q(x2,y2),设直线y=kx+m(k≠0),联立方程整理所得方程有,且由根与系数关系用m,k表示x1+x2,x1x2,若N为PQ的中点结合|AP|=|AQ|知PQ⊥AN可得m、k的等量关系,结合即可求m的范围.【详解】(1)∵,即,∴,即有x2+3y2=3,即点M(x,y)的轨迹C的方程为+y2=1.(2)由得(1+3k2)x2+6kmx+3(m2-1)=0.∵曲线C与直线y=kx+m(k≠0)相交于不同的两点,∴Δ=(6km)2-12(1+3k2)(m2-1)=12(3k2-m2+1)>0,即3k2-m2+1>0①,且x1+x2=,x1x2=.设P(x1,y1),Q(x2,y2),线段PQ的中点N(x0,y0),则.∵|AP|=|AQ|,即知PQ⊥AN,设kAN表示直线AN的斜率,又k≠0,∴kANk=-1.即·k=-1,得3k2=2m-1②,而3k2>0,有m>.将②代入①得2m1m2+1>0,即2m<0,解得0<m<2,∴m的取值范围为.【点睛】思路点睛:1、由向量垂直,结合其坐标表示得到关于x,y的方程,写出曲线C的标准方程即可.2、由直线与曲线C相交,联立方程有,由|AP|=|AQ|得直线的垂直关系,即斜率之积为-1,进而可求参数的范围.20、(1);(2)存在,理由见解析.【解析】(1)根据题意用定义法求解轨迹方程;(2)在第一问的基础上,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论