版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
3.1.1函数的概念
第三章函数概念与性质1.初中学习的函数的定义是什么?
设在一个变化过程中有两个变量x和y,如果对于x的每一个值,y都有唯一的值与它对应,那么就说y是x的函数.其中x叫自变量,y叫因变量.复习回顾2.回顾初中学过哪些函数?(1)一次函数(2)正比例函数(3)反比例函数(4)二次函数问题1.某“复兴号”高速列车到350km/h后保持匀速运行半小时。这段时间内,列车行进的路程S(单位:km)与运行时间t(单位:h)的关系可以表示为S=350t。思考:根据对应关系S=350t,这趟列车加速到350km/h后,运行1h就前进了350km,这个说法正确吗?不正确。对应关系应为S=350t,其中,问题2某电气维修告诉要求工人每周工作至少1天,至多不超过6天。如果公司确定的工资标准是每人每天350元,而且每周付一次工资,那么你认为该怎样确定一个工人每周的工资?一个工人的工资w(单位:元)是他工作天数d的函数吗?是函数,对应关系为w=350d,其中,思考:在问题1和问题2中的函数有相同的对应关系,你认为它们是同一个函数吗?为什么?不是。自变量的取值范围不一样。问题3如图,是北京市2016年11月23日的空气质量指数变化图。如何根据该图确定这一天内任一时刻th的空气质量指数的值I?你认为这里的I是t的函数吗?是,t的变化范围是,I的范围是问题4国际上常用恩格尔系数反映一个地区人民生活质量的高低,恩格尔系数越低,生活质量越高。上表是我国某省城镇居民恩格尔系数变化情况,从表中可以看出,该省城镇居民的生活质量越来越高。你认为该表给出的对应关系,恩格尔系数r是年份y的函数吗?y的取值范围是恩格尔系数r是年份y的函数
问题情境自变量的集合对应关系函数值得集合函数值所在的集合问题一=S=350t=问题二=w=350d={350,700,1050,1400,1750,2100}问题三=图1)=问题四2011,表1={0.3669,0.3681,0.3817,0.3569,0.3515,0.3353,0.3387,0.2989,0.2935,0.2857}=共同特征有:(1)都包含两个非空数集,用A,B来表示;(2)都有一个对应关系;(3)尽管对应关系的表示方法不同,但它们都有如下特性:对于数集A中的任意一个数x,按照对应关系,在数集B中都有唯一确定的数y和它对应。思考:上述问题1~问题4中的函数有哪些共同特征?由此你能概括出函数概念的本质特征吗?函数的概念:
设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数y和它对应,那么就称f:A→B为从集合A到集合B的一个函数(function),记作:y=f(x)x∈A.AB1234(1)12354AB(2)32-249AB(4)1432-2AB(5)
※一对一※多对一※一对多※左边不能有剩余,右边可以有剩余512336AB(3)4题型一:判断是否能构成函数画竖线判断是否存在一对多想一想f(a)表示什么意思?f(a)与f(x)有什么区别?对函数符号y=f(x)的理解1、y=f(x)为“y是x的函数”的数学表示,仅是一个函数符号,
f(x)不是f与x相乘。一般地,f(a)表示当x=a时的函数值,是一个常量。f(x)表示自变量x的函数,一般情况下是变量。例如:y=3x+1可以写成f(x)=3x+1当x=2时y=7可以写成f(2)=72、“y=f(x)”是函数符号,可以用任意的字母表示,如“y=g(x)”,“y=h(x)”;1.对于函数y=f(x),以下说法正确的有()①y是x的函数②对于不同的x,y的值也不同③f(a)表示当x=a时函数f(x)的值,是一个常量④f(x)一定可以用一个具体的式子表示出来个个个个B
学以致用x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)|
x∈A}叫做函数的值域.思考:函数的值域与集合B什么关系?请你说出上述四个问题的值域?问题1和问题2中,值域就是集合B1和B2;问题3和问题4中,值域是B3和B4的真子集。函数的值域是集合B的子集。定义域值域对应关系f函数三要素练习:一次函数、二次函数、反比例函数的定义域和值域:函数一次函数二次函数反比例函数a>0a<0对应关系定义域值域x→ax+b
x→ax2+bx+c
y=ax+b(a≠0)
y=ax2+bx+c(a≠0)
R
R
R
{x|x≠0}
R
{y|y≠0}
例2已知函数(1)求函数的定义域.(2)求的值.(3)当a>0时,求f(a),f(a-1)的值.分析:函数的定义域通常由问题的实际背景确定,如前面所述的三个实例.如果只给出解析式y=f(x),而没有指明它的定义域,那么函数的定义域就是指能使这个式子有意义的实数的集合.
题型二:求函数定义域解题方法(求函数定义域的注意事项)(1)如果函数f(x)是整式,那么函数的定义域是实数集R;(2)如果函数f(x)是分式,那么函数的定义域是使分母不等于零的实数组成的集合;(3)如果函数f(x)是二次根式,那么函数的定义域是使根号内的式子大于或等于零的实数组成的集合;(4)如果函数f(x)是由两个或两个以上代数式的和、差、积、商的形式构成的,那么函数的定义域是使各式子都有意义的自变量的取值集合(即求各式子自变量取值集合的交集).
定义域相同对应关系不同题型三:判断函数是否是同一函数
定义域不同对应关系相同
定义域相同对应关系相同判断是不是同一函数:优先看定义域是否一样,再看对应关系是否相同,若两者都相同,则函数是同一函数。D课后小结2.函数的三要素定义域
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年房产营销宣传品设计委托协议
- 科学通史课后习题参考
- 2024年期仓库租赁临时协议样本
- 2024年度物业管理与服务协议样本
- 2024年期职工宿舍建筑施工协议范本
- 文书模板-《保洁人员外出干活意外处理协议书》
- 2024年建筑工程主体验收劳务协议
- 2024年专业牛只运输服务协议模板
- 城市出行汽车租赁正规协议样式2024
- 2024住宅区保洁员劳务协议样本
- 基于核心素养初中数学跨学科教学融合策略
- RFJ 006-2021 RFP型人防过滤吸收器制造与验收规范(暂行)
- 2024年高中语文学业水平过关测试四-名句名篇默写积累过关训练(全国通用)学生版
- 内蒙古的特色美食
- 招投标-招投标管理
- 售后工程师热水系统维护培训
- 项目管理机构及人员配备表
- 空乘大学生职业生涯规划
- 使用电器安全教育课件
- 动物的生长激素与动物发育
- 《实名认证》课件
评论
0/150
提交评论