




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
二维固体问题的有限元法第7章
Slide_Chpt07-FEMfor2DSolidsy内容引言线性三角形单元场变量的插值构造形函数使用面积坐标应变矩阵单元矩阵线性矩形单元构造形函数应变矩阵单元矩阵高斯积分计算
meSlide_Chpt07-FEMfor2DSolidsy内容线性四边形单元坐标映射应变矩阵单元矩阵评述高次单元讨论(高斯积分)实例研究Slide_Chpt07-FEMfor2DSolidsy引言2D固体单元用于分析平面应变问题和平面应力题。
2D固体单元可以为具有直边或曲边的三角形、矩形或四边形。
2D固体单元可在2D固体所在平面内变形。
任一点处拥有分别沿x
和y方向的两个位移分量和力分量。
Slide_Chpt07-FEMfor2DSolidsy引言对平面应变问题可取单位厚度,但对平面应力问题必须使用实际厚度。分析中,假设单元具有均匀厚度h。
可方便地得到变厚度的2-D单元,其推导过程与均匀厚度的完全一样。Slide_Chpt07-FEMfor2DSolidsy2D固体–平面应力和平面应变平面应力平面应变Slide_Chpt07-FEMfor2DSolidsy线性三角形单元比四边形单元的精度低被大多数用于生成复杂几何形体的网格生成器所采用线性三角形单元节点三角形单元Slide_Chpt07-FEMfor2DSolidsy场变量的插值式中(形函数)节点1节点2节点3节点1的位移节点2的位移节点3的位移Slide_Chpt07-FEMfor2DSolidsy构造形函数假设:i=1,2,3orSlide_Chpt07-FEMfor2DSolidsy构造形函数德耳塔函数性质:故,解得,对于对于Slide_Chpt07-FEMfor2DSolidsy构造形函数将
a1、b1和c1代回到N1
=a1
+b1x+c1y得:三角形面积
力矩矩阵Slide_Chpt07-FEMfor2DSolidsy构造形函数类似地,Slide_Chpt07-FEMfor2DSolidsy构造形函数式中ijki=1,2,3通过循环轮换确定j和k
的值i=1,2j=2,3k=3,1Slide_Chpt07-FEMfor2DSolidsy使用面积坐标为构造形函数的另一种方法
2-3-P:类似地:3-1-PA21-2-PA3Slide_Chpt07-FEMfor2DSolidsy使用面积坐标单位分解性:德耳塔函数性质:如当P
位于节点2或节点3时,L1=0故,Slide_Chpt07-FEMfor2DSolidsy应变矩阵式中
(常应变单元)Slide_Chpt07-FEMfor2DSolidsy单元矩阵常数矩阵
Slide_Chpt07-FEMfor2DSolidsy单元矩阵对于均匀密度和厚度的单元:Eisenberg和Malvern(1973)公式:Slide_Chpt07-FEMfor2DSolidsy单元矩阵对于均布载荷:Slide_Chpt07-FEMfor2DSolidsy线性矩形单元应变矩阵不为常量可更精确地表示应力和应变由于形状规则使其公式推导简捷Slide_Chpt07-FEMfor2DSolidsy构造形函数考虑任一矩形单元节点1的位移节点2的位移节点3的位移节点4的位移Slide_Chpt07-FEMfor2DSolidsy构造形函数式中节点1节点2节点3节点4Slide_Chpt07-FEMfor2DSolidsy构造形函数德耳塔函数性质单位分解性节点1节点2节点3节点4Slide_Chpt07-FEMfor2DSolidsy应变矩阵注意:不再为常数矩阵!Slide_Chpt07-FEMfor2DSolidsy单元矩阵
dxdy=abdxdh
故,Slide_Chpt07-FEMfor2DSolidsy单元矩阵对于均布载荷:Slide_Chpt07-FEMfor2DSolidsy高斯积分用于计算ke
和me中的积分(实际中)沿1维方向:对于被积函数为n=2m-1阶的多项式,利用m
个高斯点可得到精确解沿2维方向:Slide_Chpt07-FEMfor2DSolidsy高斯积分m
高斯点
xj
高斯权wj
精确阶数
n
10212-1/3,1/31,133-0.6,0,0.65/9,8/9,5/954-0.861136,-0.339981,0.339981,0.8611360.347855,0.652145,0.652145,0.34785575-0.906180,-0.538469,0,0.538469,0.9061800.236927,0.478629,0.568889,0.478629,0.23692796-0.932470,-0.661209,-0.238619,0.238619,0.661209,0.9324700.171324,0.360762,0.467914,0.467914,0.360762,0.17132411Slide_Chpt07-FEMfor2DSolidsy计算
meSlide_Chpt07-FEMfor2DSolidsy计算
me
例如注意:实际中经常利用高斯积分求积Slide_Chpt07-FEMfor2DSolidsy线性四边形单元矩形单元应用受限应用其边不平行的四边形单元更方便对于不规则的形状,在应用高斯积分前须进行坐标映射Slide_Chpt07-FEMfor2DSolidsy坐标映射物理坐标自然坐标(位移插值)(坐标插值)Slide_Chpt07-FEMfor2DSolidsy坐标映射式中,节点1的坐标节点2的坐标节点3的坐标节点4的坐标Slide_Chpt07-FEMfor2DSolidsy坐标映射将
x=1代入
或消去
,Slide_Chpt07-FEMfor2DSolidsy应变矩阵或式中(雅可比矩阵)因为,Slide_Chpt07-FEMfor2DSolidsy应变矩阵故,将Ni对于x
和y的微分转换成Ni对于
和
的微分(形函数对于物理坐标的微分与其对于自然坐标的微分之间的关系)Slide_Chpt07-FEMfor2DSolidsy单元矩阵Murnaghan(1951)公式:dA=|J|dxdh
Slide_Chpt07-FEMfor2DSolidsy评述用于坐标插值的形函数与用于位移场插值的形函数相同,所以这种单元被称为等参数单元。
注意用于坐标插值的形函数不一定非得等于用于位移插值的形函数。
当用于坐标插值和用于位移插值的形函数不相同时,则形成所谓的次参数单元和超参数单元。Slide_Chpt07-FEMfor2DSolidsy高次单元高次三角形单元nd=(p+1)(p+2)/2节点
i,Argyris(
1968)形函数公式:Slide_Chpt07-FEMfor2DSolidsy高次单元高次三角形单元三次单元二次单元Slide_Chpt07-FEMfor2DSolidsy高次单元高次矩形单元拉格朗日型:(Zienkiewicz等,2000)Slide_Chpt07-FEMfor2DSolidsy高次单元高次矩形单元(9节点2次单元)Slide_Chpt07-FEMfor2DSolidsy高次单元高次矩形单元Serendipity型:(8节点2次单元)Slide_Chpt07-FEMfor2DSolidsy高次单元高次矩形单元(12节点3次单元)对于角节点:对于边节点:对于边节点:
其中
其中和和Slide_Chpt07-FEMfor2DSolidsy曲边单元Slide_Chpt07-FEMfor2DSolidsy讨论(高斯积分)当采用高斯积分算法时,须决定所用的高斯点数。理论上讲,对于一个1维积分,采用m个积分点可获得以(2m-1)阶多项式为被积函数的精确结果。
作为一普遍适用的法则,对于高次单元应使用较多的高斯点。
Slide_Chpt07-FEMfor2DSolidsy讨论(高斯积分)采用较少数量的高斯点有利于消除由位移法所引起的过硬现象。
使用形函数将限定了单元内部的位移模式。这意味着在某种程度上以形函数的形式规定了单元的位移,即相当于对单元施加了预约束。
受如此约束的单元应较硬。常可观察到高次单元通常较低次单元软,这是由于高次单元对单元的这种约束较弱。Slide_Chpt07-FEMfor2DSolidsy讨论(高斯积分)线性单元在每个方向上取2个高斯点,2次单元在每个方向上取2或3个高斯点在许多情况下已足够。
大多数基于显式公式的显式有限元程序倾向于采用单点积分以最大限度的节省CPU时间。Slide_Chpt07-FEMfor2DSolidsy实例研究侧驱动微型电动机Slide_Chpt07-FEMfor2DSolidsy实例研究双晶硅材料特性杨氏模量,E169GPa泊松比,
0.262密度,
2300kgm-310N/m10N/m10N/mSlide_Chpt07-FEMfor2DSolidsy实例研究分析1:使用24个双线性四边形单元(41个节点)的VonMises应力分布Slide_Chpt07-FEMfor2DSolidsy实例研究分析2:使用96个双线性四边形单元(129个节点)的VonMises应力分布Slide_Chpt07-FEMfor2DSolidsy实例分析分析3:使用144个双线性四边形单元(185个节点)的VonMises应力分布Slide_Chpt07-FEMfor2DSolidsy实例分析分析4:使用24个8节点四边形单元(105个节点)的VonMises应力分布Slide_Chpt07-FEMfor2DSolidsy实例分析分析5:使用192个3节点三角形单元(129个节点)的VonMises应力分布Slide_C
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论