![中学生标准学术能力诊断性测试2024届数学高二上期末质量检测模拟试题含解析_第1页](http://file4.renrendoc.com/view/2fb479c365e2a251fb307b3b0d0c2b3a/2fb479c365e2a251fb307b3b0d0c2b3a1.gif)
![中学生标准学术能力诊断性测试2024届数学高二上期末质量检测模拟试题含解析_第2页](http://file4.renrendoc.com/view/2fb479c365e2a251fb307b3b0d0c2b3a/2fb479c365e2a251fb307b3b0d0c2b3a2.gif)
![中学生标准学术能力诊断性测试2024届数学高二上期末质量检测模拟试题含解析_第3页](http://file4.renrendoc.com/view/2fb479c365e2a251fb307b3b0d0c2b3a/2fb479c365e2a251fb307b3b0d0c2b3a3.gif)
![中学生标准学术能力诊断性测试2024届数学高二上期末质量检测模拟试题含解析_第4页](http://file4.renrendoc.com/view/2fb479c365e2a251fb307b3b0d0c2b3a/2fb479c365e2a251fb307b3b0d0c2b3a4.gif)
![中学生标准学术能力诊断性测试2024届数学高二上期末质量检测模拟试题含解析_第5页](http://file4.renrendoc.com/view/2fb479c365e2a251fb307b3b0d0c2b3a/2fb479c365e2a251fb307b3b0d0c2b3a5.gif)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
中学生标准学术能力诊断性测试2024届数学高二上期末质量检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知,则的大小关系为()A. B.C. D.2.如图,在四面体中,,,,分别为,,,的中点,则化简的结果为()A. B.C. D.3.《周髀算经》中有这样一个问题:从冬至起,接下来依次是小寒、大寒、立春、雨水、惊蛰、春分、清明、谷雨、立夏、小满、芒种共十二个节气,其日影长依次成等差数列,其中大寒、惊蛰、谷雨三个节气的日影长之和为25.5尺,且前九个节气日影长之和为85.5尺,则立春的日影长为()A.9.5尺 B.10.5尺C.11.5尺 D.12.5尺4.若数列是等比数列,且,则()A.1 B.2C.4 D.85.在空间直角坐标系中,点关于轴的对称点为点,则点到直线的距离为()A. B.C. D.66.已知,,若不等式恒成立,则正数的最小值是()A.2 B.4C.6 D.87.已知抛物线,为坐标原点,以为圆心的圆交抛物线于、两点,交准线于、两点,若,,则抛物线方程为()A. B.C. D.8.中,,,分别为三个内角,,的对边,若,,,则()A. B.C. D.9.已知等差数列,,,则数列的前项和为()A. B.C. D.10.直线分别与轴,轴交于,两点,点在圆上,则面积的取值范围是A. B.C. D.11.已知函数,则的单调递增区间为().A. B.C. D.12.在平面直角坐标系中,双曲线的右焦点为,过双曲线上一点作轴的垂线足为,若,则该双曲线的离心率为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知等比数列满足,则_________14.函数在处的切线与平行,则________.15.若直线与直线平行,且原点到直线的距离为,则直线的方程为____________.16.以正方体的对角线的交点为坐标原点O建立右手系的空间直角坐标系,其中,,,则点的坐标为______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,已知圆锥SO底面圆的半径r=1,直径AB与直径CD垂直,母线SA与底面所成的角为.(1)求圆锥SO的侧面积;(2)若E为母线SA的中点,求二面角E-CD-B的大小.(结果用反三角函数值表示)18.(12分)已知椭圆的离心率为,短轴端点到焦点的距离为2(1)求椭圆的方程;(2)设为椭圆上任意两点,为坐标原点,且以为直径的圆经过原点,求证:原点到直线的距离为定值,并求出该定值19.(12分)已知的三个内角,,的对边分别为,,,且满足.(1)求角的大小;(2)若,,,求的长.20.(12分)已知的内角的对边分别为a,,若向量,且(1)求角的值;(2)已知的外接圆半径为,求周长的最大值.21.(12分)某城市一入城交通路段限速60公里/小时,现对某时段通过该交通路段的n辆小汽车车速进行统计,并绘制成频率分布直方图(如图).若这n辆小汽车中,速度在50~60公里小时之间的车辆有200辆.(1)求n的值;(2)估计这n辆小汽车车速的中位数;(3)根据交通法规定,小车超速在规定时速10%以内(含10%)不罚款,超过时速规定10%以上,需要罚款.试根据频率分布直方图,以频率作为概率的估计值,估计某辆小汽车在该时段通过该路段时被罚款的概率.22.(10分)已知函数,其中为实数.(1)若函数的图像在处的切线与直线平行,求函数的解析式;(2)若,求在上的最大值和最小值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】构造利用导数判断函数在上单调递减,利用单调性比较大小【详解】设恒成立,函数在上单调递减,.故选:B2、C【解析】根据向量的加法和数乘的几何意义,即可得到答案;【详解】故选:C3、B【解析】设影长依次成等差数列,公差为,根据题意结合等差数列的通项公式及前项和公式求出首项和公差,即可得出答案.【详解】解:设影长依次成等差数列,公差为,则,前9项之和,即,解得,所以立春的日影长为.故选:B.4、C【解析】根据等比数列的性质,由题中条件,求出,即可得出结果.【详解】因为数列是等比数列,由,得,所以,因此.故选:C.5、C【解析】按照空间中点到直线的距离公式直接求解.【详解】由题意,,,的方向向量,,则点到直线的距离为.故选:C.6、B【解析】由基本不等式求出的最小值,只需最小值大于等于18,得到关于的不等式,求解,即可得出结论.【详解】,因为不等式恒成立,所以,即,解得,所以.故选:B.【点睛】本题考查基本不等式的应用,考查一元二次不等式的解法,属于基础题.7、C【解析】设圆的半径为,根据已知条件可得出关于的方程,求出正数的值,即可得出抛物线的方程.【详解】设圆的半径为,抛物线的准线方程为,由勾股定理可得,因为,将代入抛物线方程得,可得,不妨设点,则,所以,,解得,因此,抛物线的方程为.故选:C.8、C【解析】利用正弦定理求解即可.【详解】,,,由正弦定理可得,解得,故选:C.9、A【解析】求出通项,利用裂项相消法求数列的前n项和.【详解】因为等差数列,,,所以,所以,所以数列的前项和为故B,C,D错误.故选:A.10、A【解析】分析:先求出A,B两点坐标得到再计算圆心到直线距离,得到点P到直线距离范围,由面积公式计算即可详解:直线分别与轴,轴交于,两点,则点P在圆上圆心为(2,0),则圆心到直线距离故点P到直线的距离的范围为则故答案选A.点睛:本题主要考查直线与圆,考查了点到直线的距离公式,三角形的面积公式,属于中档题11、D【解析】利用导数分析函数单调性【详解】的定义域为,,令,解得故的单调递增区间为故选:D12、A【解析】根据条件可知四边形为正方形,从而根据边长相等,列式求双曲线的离心率.【详解】不妨设在第一象限,则,根据题意,四边形为正方形,于是,即,化简得,解得(负值舍去).故选:A.二、填空题:本题共4小题,每小题5分,共20分。13、84【解析】设公比为q,求出,再由通项公式代入可得结论【详解】设公比为q,则,解得所以故答案为:8414、2【解析】由得出的值.【详解】因为函数在处的切线与平行所以,故故答案为:215、【解析】可设直线的方程为,利用点到直线的距离公式求得,即可得解.【详解】可设直线的方程为,即,则原点到直线的距离为,解得,所以直线的方程为.故答案为:.16、【解析】根据已知点的坐标,确定出坐标系即可得【详解】如图,由已知得坐标系如图所示,轴过正方形的对角线交点,轴过中点,轴过中点,因此可知坐标为故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)先根据母线与底面的夹角求出圆锥的母线长,然后根据圆锥的侧面积公式即可(2)利用三角形的中位线性质,先求出二面角,然后利用二面角与二面角的互补关系即可求得【小问1详解】根据母线SA与底面所成的角为,且底面圆的半径可得:则圆锥的侧面积为:【小问2详解】如图所示,过点作底面的垂线交于,连接,则为的中位线则有:,,易知,则,又直径AB与直径CD垂直,则则有:为二面角可得:又二面角与二面角互为补角,则二面角的余弦值为故二面角大小为18、(1)(2)证明见解析,定值为【解析】(1)根据题意得到,,得到椭圆方程.(2)考虑直线斜率存在和不存在两种情况,联立方程,根据韦达定理得到根与系数的关系,将题目转化为,化简得到,代入计算得到答案.【小问1详解】椭圆的离心率为,短轴端点到焦点的距离为,故,,故椭圆方程为.【小问2详解】当直线斜率存在时,设直线方程为,,,则,即,,以为直径的圆经过原点,故,即,即,化简整理得到:,原点到直线的距离为.当直线斜率不存在时,为等腰直角三角形,设,则,解得,即直线方程为,到原点的距离为.综上所述:原点到直线的距离为定值.【点睛】本题考查了椭圆方程,椭圆中的定值问题,意在考查学生的计算能力,转化能力和综合应用能力,其中将圆过原点转化为是解题的关键.19、(1);(2).【解析】(1)由正弦定理化边为角后,结合两角和的正弦公式、诱导公式可求得;(2)用表示出,然后平方由数量积的运算求得向量的模(线段长度)【详解】(1)因为,所以由正弦定理可得,即,因为,所以,,∵,故;(2)由,得,所以,所以.20、(1)(2)6【解析】(1)由可得,再利用正弦定理和三角函数恒等变换公可得,从而可求出角的值,(2)利用正弦定理求出,再利用余弦定理结合基本不等式可得的最大值为4,从而可求出三角形周长的最大值【小问1详解】由,得
,由正弦定理,得,即.在中,由,得.又,所以.【小问2详解】根据题意,得,由余弦定理,得,即,整理得,当且仅当时,取等号,所以的最大值为所以.所以的周长的最大值为
.21、(1)(2)(3)【解析】(1)根据已知条件,结合频率与频数的关系,即可求解(2)根据已知条件,结合中位数公式,即可求解(3)在这500辆小车中,有40辆超速,再结合古典概型的概率公式,即可求解【小问1详解】解:由直方图可知,速度在公里小时之间的频率为,所以,解得【小问2详解】解:设这辆小汽车车速的中位数为,则,解得小问3详解】解:由交通法则可知,小车速度在66公里小时以上需要罚款,由直方图可知,小车速度在之间有辆,由统计
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度企业年会赞助商权益执行与监测合同
- 2025年度新能源合作伙伴廉洁合作协议(新版)
- 2025年中国安防电源行业市场前瞻与投资战略规划分析报告
- 2025年变压器绕组温度计项目可行性研究报告
- 2025年度数据中心网络安全借款合同范本
- 2025年度养老地产项目认筹协议书
- 2019-2025年中国冷冻调理食品行业发展趋势预测及投资战略咨询报告
- 2025年假离婚协议书撰写及隐私保护服务合同
- 2025年度艺术品交易合同:古玩字画买卖专项服务协议
- 2025年陶瓷砖 项目可行性研究报告
- 设备维保的维修成本和维护费用
- 2024年潍坊护理职业学院高职单招(英语/数学/语文)笔试历年参考题库含答案解析
- 客运站员工安全生产教育培训
- 口腔预防儿童宣教
- 绿城桃李春风推广方案
- 对使用林地的监管事中事后监督管理
- 体质健康概论
- 档案管理流程优化与效率提升
- 2023高考语文实用类文本阅读-新闻、通讯、访谈(含答案)
- 人工智能在商场应用
- (完整word版)大格子作文纸模板(带字数统计)
评论
0/150
提交评论