重庆市康德卷2023年高二上数学期末质量检测试题含解析_第1页
重庆市康德卷2023年高二上数学期末质量检测试题含解析_第2页
重庆市康德卷2023年高二上数学期末质量检测试题含解析_第3页
重庆市康德卷2023年高二上数学期末质量检测试题含解析_第4页
重庆市康德卷2023年高二上数学期末质量检测试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

重庆市康德卷2023年高二上数学期末质量检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.均匀压缩是物理学一种常见现象.在平面直角坐标系中曲线均匀压缩,可用曲线上点的坐标来描述.设曲线上任意一点,若将曲线纵向均匀压缩至原来的一半,则点的对应点为.同理,若将曲线横向均匀压缩至原来的一半,则曲线上点的对应点为.若将单位圆先横向均匀压缩至原来的一半,再纵向均匀压缩至原来的,得到的曲线方程为()A. B.C. D.2.若,则与的大小关系是()A. B.C. D.不能确定3.设数列的前项和为,若,,,则、、、中,最大的是()A. B.C. D.4.已知圆过点,,且圆心在轴上,则圆的方程是()A. B.C. D.5.若不等式组表示的区域为,不等式表示的区域为,向区域均匀随机撒颗芝麻,则落在区域中的芝麻数约为()A. B.C. D.6.已知直线过点,,则直线的方程为()A. B.C. D.7.若双曲线离心率为,过点,则该双曲线的方程为()A. B.C. D.8.已知,,则下列结论一定成立的是()A. B.C. D.9.若命题“或”与命题“非”都是真命题,则A.命题与命题都是真命题B.命题与命题都是假命题C.命题是真命题,命题是假命题D.命题是假命题,命题是真命题10.第24届冬季奥林匹克运动会,将在2022年2月4日在中华人民共和国北京市和张家口市联合举行.这是中国历史上第一次举办冬季奥运会,北京成为奥运史上第一个举办夏季奥林匹克运动会和冬季奥林匹克运动会的城市.同时中国也成为第一个实现奥运“全满贯”(先后举办奥运会、残奥会、青奥会、冬奥会、冬残奥会)国家.根据规划,国家体育场(鸟巢)成为北京冬奥会开、闭幕式的场馆.国家体育场“鸟巢”的钢结构鸟瞰图如图所示,内外两圈的钢骨架是离心率相同的椭圆,若由外层椭圆长轴一端点和短轴一端点分别向内层椭圆引切线,(如图),且两切线斜率之积等于,则椭圆的离心率为()A. B.C. D.11.若抛物线x2=8y上一点P到焦点的距离为9,则点P的纵坐标为()A. B.C.6 D.712.在等比数列中,,则的公比为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知抛物线C:y2=8x的焦点为F,直线l过点F与抛物线C交于A,B两点,以F为圆心的圆交线段AB于C,D两点(从上到下依次为A,C,D,B),若,则该圆的半径r的取值范围是____________.14.圆被直线所截得弦的最短长度为___________.15.设O为坐标原点,F为双曲线的焦点,过F的直线l与C的两条渐近线分别交于A,B两点.若,且的内切圆的半径为,则C的离心率为____________16.如图,在棱长为1的正方体中,点M为线段上的动点,下列四个结论:①存在点M,使得直线AM与直线夹角为30°;②存在点M,使得与平面夹角的正弦值为;③存在点M,使得三棱锥体积为;④存在点M,使得,其中为二面角的大小,为直线与直线AB所成的角则上述结论正确的有______.(填上正确结论的序号)三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知,是函数的两个极值点.(1)求的解析式;(2)记,,若函数有三个零点,求的取值范围.18.(12分)已知动直线l:(m+3)x-(m+2)y+m=0与圆C:(x-3)2+(y-4)2=9(1)求证:无论m为何值,直线l与圆C总相交(2)m为何值时,直线l被圆C所截得的弦长最小?请求出该最小值19.(12分)我国是世界最大的棉花消费国、第二大棉花生产国,其中,新疆棉产量约占国内产量的87%,消费量约占国内消费量的67%.新疆棉的品质高:纤维柔长,洁白光泽,弹性良好,各项质量指标均超国家标准.尤其是被授予“中国彩棉之乡”称号的新疆建设兵团一四八团生产的天然彩棉,株型紧凑,吐絮集中,品质优良,色泽纯正、艳丽,手感柔软,适合中高档纺织.新疆彩棉根据色泽、手感、纤维长度等评分指标打分,得分在区间内分别对应四级、三级、二级、一级.某经销商从采购的新蚯彩棉中随机抽取20包(每包1kg),得分数据如图(1)试统计各等级数量,并估计各等级在该批彩棉中所占比例;(2)用样本估计总体,经销商参考以下两种销售方案进行销售:方案1:不分等级卖出,单价为1.79万元/吨;方案2:分等级卖出,不同等级的新疆彩棉售价如下表所示:等级一级二级三级四级售价(万元/吨)若从经销商老板的角度考虑,采用哪种方案较好?并说明理由20.(12分)已知是等差数列,是等比数列,且,,,.(1)求的通项公式;(2)设,求数列的前n项和.21.(12分)已知圆C的圆心在直线上,圆心到x轴的距离为2,且截y轴所得弦长为(1)求圆C的方程;(2)若圆C上至少有三个不同的点到直线的距离为,求实数k的取值范围22.(10分)已知公差不为的等差数列的首项,且、、成等比数列.(1)求数列的通项公式;(2)设,,是数列的前项和,求使成立的最大的正整数.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】设单位圆上一点为,经过题设变换后坐标为,则,代入圆的方程即可得曲线方程.【详解】由题设,单位圆上一点坐标为,经过横向均匀压缩至原来的一半,纵向均匀压缩至原来的,得到对应坐标为,∴,则,故中,可得:.故选:C.2、B【解析】由题知,进而研究的符号即可得答案.详解】解:,所以,即.故选:B3、C【解析】求出的表达式,解不等式可得结果.【详解】由已知可得,故数列为等差数列,且公差为,所以,,令可得.因此,当时,最大.故选:C.4、B【解析】根据圆心在轴上,设出圆的方程,把点,的坐标代入圆的方程即可求出答案.【详解】因为圆的圆心在轴上,所以设圆的方程为,因为点,在圆上,所以,解得,所以圆的方程是.故选:B.5、A【解析】作出两平面区域,计算两区域的公共面积,利用几何概型得出芝麻落在区域Γ内的概率,进而可得答案.【详解】作出不等式组所表示的平面区域如下图中三角形ABC及其内部,不等式表示的区域如下图中的圆及其内部:由图可得,A点坐标为点坐标为坐标为点坐标为.区域即的面积为,区域的面积为圆的面积,即,其中区域和区域不相交的部分面积即空白面积,所以区域和区域相交的部分面积,所以落入区域的概率为.所以均匀随机撒颗芝麻,则落在区域中芝麻数约为.故选:A.6、C【解析】根据两点的坐标和直线的两点式方程计算化简即可.【详解】由直线的两点式方程可得,直线l的方程为,即故选:C7、B【解析】分析可得,再将点代入双曲线的方程,求出的值,即可得出双曲线的标准方程.【详解】,则,,则双曲线的方程为,将点的坐标代入双曲线的方程可得,解得,故,因此,双曲线的方程为.故选:B8、B【解析】根据不等式的同向可加性求解即可.【详解】因为,所以,又,所以.故选:B.9、D【解析】因为非p为真命题,所以p为假命题,又p或q为真命题,所以q为真命题,选D.10、B【解析】分别设内外层椭圆方程为、,进而设切线、分别为、,联立方程组整理并结合求、关于a、b、m的关系式,再结合已知得到a、b的齐次方程求离心率即可.【详解】若内层椭圆方程为,由离心率相同,可设外层椭圆方程为,∴,设切线为,切线为,∴,整理得,由知:,整理得,同理,,可得,∴,即,故.故选:B.【点睛】关键点点睛:根据内外椭圆的离心率相同设椭圆方程,并写出切线方程,联立方程结合及已知条件,得到椭圆参数的齐次方程求离心率.11、D【解析】设出P的纵坐标,利用抛物线的定义列出方程,求出答案.【详解】由题意得:抛物线准线方程为,P点到抛物线的焦点的距离等于到准线的距离,设点纵坐标为,则,解得:.故选:D12、D【解析】利用等比数列的性质把方程都变成和有关的式子后进行求解.【详解】由等比数列的等比中项性质可得,又,所以,因,所以,所以,故选:D.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】设出直线的方程为,代入抛物线方程,消去,可得关于的二次方程,运用韦达定理及抛物线的定义,化简计算可求解.【详解】抛物线C:y2=8x的焦点为,设以为圆心的圆的半径为,可知,,设,直线的方程为,则,代入抛物线方程,可得,即有,,,,即,所以.故答案为:14、【解析】首先确定直线所过定点;由圆的方程可确定圆心和半径,进而求得圆心到的距离,由此可知所求最短长度为.【详解】由得:,直线恒过点;,在圆内;又圆的圆心为,半径,圆心到点的距离,所截得弦的最短长度为.故答案为:.15、##【解析】,作出渐近线图像,由题可知的内切圆圆心在x轴上,过内心作OA和AB的垂线,可得几何关系,据此即可求解.【详解】双曲线渐近线OA与OB如图所示,OA与OB关于x轴对称,设△OAB的内切圆圆心为,则M在的平分线上,过点分别作于点于,由,则四边形为正方形,由焦点到渐近线的距离为得,又,∴,且,∴,∴,则.故答案为:.16、②③【解析】对①:由连接,,由平面,即可判断;对③:设到平面的距离为,则,所以即可判断;对④:以为坐标原点建立如图所示的空间直角坐标系,设,利用向量法求出与,比较大小即可判断;对②:设与平面夹角为,利用向量法求出,即可求解判断.【详解】解:对①:连接,,在正方体中,由平面,可得,又,,所以平面,所以,故①错误;对③:设到平面的距离为,则,所以,故③正确;对④:以为坐标原点建立如图所示的空间直角坐标系,设,则,0,,,0,,,,,,,,所以,,,,,,设平面的法向量为,,,则,即,取,,,又,1,是平面的一个法向量,又二面角为锐二面角或直角,所以,,,又,,,故④错误对②:由④的解析知,,,,设平面的法向量为,则,即,取,则,设与平面夹角为,令,即,又,解得或,故②正确.故答案为:②③.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)【解析】(1)根据极值点的定义,可知方程的两个解即为,,代入即得结果;(2)根据题意,将方程转化为,则函数与直线在区间,上有三个交点,进而求解的取值范围【详解】解:(1)因为,所以根据极值点定义,方程的两个根即为,,,代入,,可得,解之可得,,故有;(2)根据题意,,,,根据题意,可得方程在区间,内有三个实数根,即函数与直线在区间,内有三个交点,又因为,则令,解得;令,解得或,所以函数在,上单调递减,在上单调递增;又因为,,,,函数图象如下所示:若使函数与直线有三个交点,则需使,即18、(1)详见解析(2)m为-时,截得的弦长最小,最小值为2【解析】(1)将直线l变形,可知直线l过定点,证明定点在圆内部;(2)利用垂径定理和弦长公式可得.【详解】(1)证明:直线l变形为m(x-y+1)+(3x-2y)=0令解得,如图所示,故动直线l恒过定点A(2,3)而|AC|==<3(半径)∴点A在圆内,故无论m取何值,直线l与圆C总相交(2)解:由平面几何知识知,弦心距越大,弦长越小,即当AC垂直直线l时,弦长最小,此时kl·kAC=-1,即,∴m=-最小值为故m为-时,直线l被圆C所截得的弦长最小,最小值为2【点睛】考查直线过定点、点与圆的位置关系以及弦长问题,解题的关键是直线系形式的转化.19、(1)答案见解析;(2)答案、理由见解析【解析】(1)根据茎叶图计算出数量以及比例.(2)计算出方案的彩棉售价平均值,由此作出决策.【详解】(1)得分在(0,25]内的有19,21,共2个,所以四缓彩棉在该批彩棉中所占比例为;得分在(25,50]内的有27,31,36,42,45,48,共6个,所以三级彩棉在该批彩棉中所占比例为;得分在(50,75]内的有51,51,58,63,65,68,73,共7个,所以二级彩棉在该批彩棉中所占比例为;得分在(75,100]内的有76,79,83,85,92,共5个,所以一级彩棉在该批彩棉中所占比例(2)解答一:选用方案2,理由如下:方案1:不分等级卖出,单价为1.79万元/吨;设方案2的彩棉售价平均值为万元/吨,则因为,所以从经销商老板角度考虑,采用方案2时销售利润比较大,应选方案2解答二:选用方案1,理由如下:方案1:不分等级卖出,单价为1.79万元/吨;设方案2的彩棉售价平均值为则,因为,但(万元)差别较小所以从经销商老板后期对彩棉分类的人力资源和时间成本角度考虑,采用方案1比较好20、(1)(2)【解析】(1)设是公差为d的等差数列,是公比为q的等比数列,运用通项公式可得,,进而得到所求通项公式;(2)求得,再由数列的求和方法:分组求和,运用等差数列和等比数列的求和公式,计算即可得到所求和.【小问1详解】解:(1)设是公差为d的等差数列,是公比为q的等比数列,由,,可得,;即有,,则,则;【小问2详解】解:,则数列的前n项和为.21、(1)或;(2).【解析】(1)设圆心为,由题意及圆的弦长公式即可列方程组,解方程组即可;(2)由题意可

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论