内蒙古自治区乌兰察布市集宁一中2024届数学高二上期末检测模拟试题含解析_第1页
内蒙古自治区乌兰察布市集宁一中2024届数学高二上期末检测模拟试题含解析_第2页
内蒙古自治区乌兰察布市集宁一中2024届数学高二上期末检测模拟试题含解析_第3页
内蒙古自治区乌兰察布市集宁一中2024届数学高二上期末检测模拟试题含解析_第4页
内蒙古自治区乌兰察布市集宁一中2024届数学高二上期末检测模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

内蒙古自治区乌兰察布市集宁一中2024届数学高二上期末检测模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.命题P:ax2+2x﹣1=0有实数根,若¬p是假命题,则实数a的取值范围是()A.{a|a<1} B.{a|a≤﹣1}C.{a|a≥﹣1} D.{a|a>﹣1}2.已知,,,则的大小关系是()A. B.C. D.3.已知实数,满足约束条件则的最大值为()A.10 B.8C.4 D.204.已知双曲线,且三个数1,,9成等比数列,则下列结论正确的是()A.的焦距为 B.的渐近线方程为C.的离心率为 D.的虚轴长为5.某汽车制造厂分别从A,B两类轮胎中各随机抽取了6个进行测试,下面列出了每一个轮胎行驶的最远里程(单位:)A类轮胎:94,96,99,99,105,107B类轮胎:95,95,98,99,104,109根据以上数据,下列说法正确的是()A.A类轮胎行驶的最远里程的众数小于B类轮胎行驶的最远里程的众数B.A类轮胎行驶的最远里程的极差等于B类轮胎行驶的最远里程的极差C.A类轮胎行驶的最远里程的平均数大于B类轮胎行驶的最远里程的平均数D.A类轮胎的性能更加稳定6.如右图,一个直径为1的小圆沿着直径为2的大圆内壁的逆时针方向滚动,M和N是小圆的一条固定直径的两个端点.那么,当小圆这样滚过大圆内壁的一周,点M,N在大圆内所绘出的图形大致是A. B.C. D.7.设变量满足约束条件:,则的最小值()A. B.C. D.8.若复数的模为2,则的最大值为()A. B.C. D.9.直线的斜率是()A. B.C. D.10.命题“存在,使得”为真命题的一个充分不必要条件是()A. B.C. D.11.已知函数,,若,使得,则实数的取值范围是()A. B.C. D.12.已知中,内角,,的对边分别为,,,,.若为直角三角形,则的面积为()A. B.C.或 D.或二、填空题:本题共4小题,每小题5分,共20分。13.若双曲线的渐近线方程为,则该双曲线的离心率为___________;若,则双曲线的右焦点到渐近线的距离为__________.14.如图,四棱锥的底面是正方形,底面,为的中点,若,则点到平面的距离为___________.15.一个高为2的圆柱,底面周长为2,该圆柱的表面积为.16.已知点在圆上,点在圆上,则的最小值是__________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)设锐角三角形ABC的内角A、B、C的对边分别为a、b、c,.(1)求B的大小(2)若,,求b.18.(12分)已知数列的前项和,数列是各项均为正数的等比数列,其中,且成等差数列.(1)求的通项公式;(2)设,求数列的前项和.19.(12分)已知公差不为0的等差数列的前项和为,且,,成等比数列,且.(1)求的通项公式;(2)若,求数列的前n项和.20.(12分)记数列的前n项和为,已知点在函数的图像上(1)求数列的通项公式;(2)设,求数列的前9项和21.(12分)已知函数(1)求函数的单调递减区间;(2)在中,角,,所对的边分别为,,,且满足,,求面积的最大值22.(10分)已知函数(a是常数).(1)当时,求的单调区间与极值;(2)若,求a的取值范围.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】根据是假命题,判断出是真命题.对分成,和两种情况,结合方程有实数根,求得的取值范围.详解】┐p是假命题,则p是真命题,∴ax2+2x﹣1=0有实数根,当a=0时,方程为2x﹣1=0,解得x=0.5,有根,符合题意;当a≠0时,方程有根,等价于△=4+4a≥0,∴a≥﹣1且,综上所述,a的可能取值为a≥﹣1故选:C【点睛】本小题主要考查根据命题否定的真假性求参数,属于基础题.2、B【解析】利用微积分基本定理计算,利用积分的几何意义求扇形面积得到,然后比较大小.【详解】,表示以原点为圆心,半径为2的圆在第二象限的部分的面积,∴;,∵e=2.71828…>2.7,,,,故选:3、A【解析】根据约束条件作出可行域,再将目标函数表示的一簇直线画出向可行域平移即可求解.【详解】作出可行域,如图所示转化为,令则,作出直线并平移使它经过可行域点,经过时,,解得,所以此时取得最大值,即有最大值,即故选:A.4、D【解析】先求得的值,然后根据双曲线的知识对选项进行分析,从而确定正确答案.【详解】方程表示双曲线,则,成等比数列,则,所以双曲线方程为,所以,故双曲线的焦距为,A选项错误.渐近线方程为,B选项错误.离心率,C选项错误.虚轴长,D选项正确.故选:D5、D【解析】根据众数、极差、平均数和方差的定义以及计算公式即可求解.【详解】解:对A:A类轮胎行驶的最远里程的众数为99,B类轮胎行驶的最远里程的众数为95,选项A错误;对B:A类轮胎行驶的最远里程的极差为13,B类轮胎行驶的最远里程的极差为14,选项B错误对C:A类轮胎行驶的最远里程的平均数为,B类轮胎行驶的最远里程的平均数为,选项C错误对D:A类轮胎行驶的最远里程的方差为,B类轮胎行驶的最远里程的方差为,故A类轮胎的性能更加稳定,选项D正确故选:D.6、A【解析】如图:如图,取小圆上一点,连接并延长交大圆于点,连接,,则在小圆中,,在大圆中,,根据大圆的半径是小圆半径的倍,可知的中点是小圆转动一定角度后的圆心,且这个角度恰好是,综上可知小圆在大圆内壁上滚动,圆心转过角后的位置为点,小圆上的点,恰好滚动到大圆上的也就是此时的小圆与大圆的切点.而在小圆中,圆心角(是小圆与的交点)恰好等于,则,而点与点其实是同一个点在不同时刻的位置,则可知点与点是同一个点在不同时刻的位置.由于的任意性,可知点的轨迹是大圆水平的这条直径.类似的可知点的轨迹是大圆竖直的这条直径.故选A.7、D【解析】如图作出可行域,知可行域的顶点是A(-2,2)、B()及C(-2,-2),平移,当经过A时,的最小值为-8,故选D.8、A【解析】由题意得,表示以为圆心,2为半径的圆,表示过原点和圆上的点的直线的斜率,由图可知,当直线与圆相切时,取得最值,然后求出切线的斜率即可【详解】因为复数的模为2,所以,所以其表示以为圆心,2为半径的圆,如图所示,表示过原点和圆上的点的直线的斜率,由图可知,当直线与圆相切时,取得最值,设切线方程为,则,解得,所以的最大值为,故选:A9、D【解析】把直线方程化为斜截式即得【详解】直线方程的斜截式为,斜率为故选:D10、B【解析】“存在,使得”为真命题,可得,利用二次函数的单调性即可得出.再利用充要条件的判定方法即可得出.【详解】解:因为“存在,使得”为真命题,所以,因此上述命题得个充分不必要条件是.故选:B.【点睛】本题考查了二次函数的单调性、充要条件的判定方法,考查了推理能力与计算能力,属于中档题.11、A【解析】由定义证明函数的单调性,再由函数不等式恒能成立的性质得出,从而得出实数的取值范围.【详解】任取,,即函数在上单调递减,若,使得,则即故选:A【点睛】结论点睛:本题考查不等式恒成立问题,解题关键是转化为求函数的最值,转化时要注意全称量词与存在量词对题意的影响.等价转化如下:(1),,使得成立等价于(2),,不等式恒成立等价于(3),,使得成立等价于(4),,使得成立等价于12、C【解析】由正弦定理化角为边后,由余弦定理求得,然后分类讨论:或求解【详解】由正弦定理,可化为:,即,所以,,所以,又为直角三角形,若,则,,,,若,则,,,故选:C二、填空题:本题共4小题,每小题5分,共20分。13、①.②.3【解析】由渐近线方程知,结合双曲线参数关系及离心率的定义求双曲线的离心率,由已知可得右焦点为,应用点线距离公式求距离.【详解】由题设,,则,当时,,则双曲线为,故右焦点为,所以右焦点到渐近线的距离为.故答案为:,3.14、【解析】以点为坐标原点,、、所在直线分别为、、轴建立空间直角坐标系,利用空间向量法可求得点到平面的距离.【详解】因为底面,,以点为坐标原点,、、所在直线分别为、、轴建立空间直角坐标系,则、、、,设平面的法向量为,,,则,取,可得,,所以,点到平面的距离为.故答案为:.15、6【解析】2r=2,r=1,S表=2rh+2r2=4+2=6.16、3-5【解析】因为点在圆上,点在圆上,故两圆的圆心分别为半径分别为和两圆的圆心距为,故两圆相离,则最小值为,故答案为.考点:1、圆的方程及圆的几何性质;2、两点间的距离公式及最值问题.【方法点晴】本题主要考查圆的方程及几何性质、两点间的距离公式及最值问题的应用,属于难题.解决解析几何的最值问题一般有两种方法:一是几何意义,特别是用圆锥曲线的定义和平面几何的有关结论来解决,非常巧妙;二是将解析几何中最值问题转化为函数问题,然后根据函数的特征选用参数法、配方法、判别式法、三角函数有界法、函数单调性法以及均值不等式法,本题就是利用圆的几何性质,将的最小值转化两圆心的距离减半径解答的.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)【解析】(1)由正弦定理,可得,进而可求出和角;(2)利用余弦定理,可得,即可求出.【详解】(1)由,得,因为,所以,又因为B为锐角,所以(2)由余弦定理,可得,解得【点睛】本题考查正弦、余弦定理在解三角形中的运用,考查学生的计算求解能力,属于基础题.18、(1),;(2).【解析】(1)利用求出数列的通项,再求出等比数列的公比即得解;(2)求出,再利用错位相减法求解.【小问1详解】解:,.当时,,适合..设等比数列公比为,,,即,或(舍去),.【小问2详解】解:,,,上述两式相减,得,所以所以.19、(1)(2)【解析】(1)根据等差数列的通项公式和等比中项,可得,再根据等差数列的前项和公式,即可求出,,进而求出结果;(2)由(1)得,结合等比数列前项和公式和对数运算性质,利用分组求和,即可求出结果.【小问1详解】解:设的公差为,由,,成等比数列可知,即,化简得.由可得,所以.将代入,得,,所以.小问2详解】解:由(1)得,所以.20、(1)(2)【解析】(1)利用的关系可求.(2)利用裂项相消法可求数列的前9项和【小问1详解】由题意知当时,;当时,,适合上式所以【小问2详解】则21、(1)(2)【解析】(1)由三角恒等变换公式化简,根据三角函数性质求解(2)由余弦定理与面积公式,结合基本不等式求解【小问1详解】由己知可得,由,解得:,故

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论