版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江苏省徐州市睢宁县高级中学2023-2024学年高二上数学期末教学质量检测试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知双曲线的两个顶点分别为A、B,点P为双曲线上除A、B外任意一点,且点P与点A、B连线的斜率为,若,则双曲线的离心率为()A. B.C.2 D.32.已知圆:,圆:,则两圆的位置关系为()A.外离 B.外切C.相交 D.内切3.下列语句为命题的是()A. B.你们好!C.下雨了吗? D.对顶角相等4.天文学家卡西尼在研究土星及其卫星的运行规律时发现:同一平面内到两个定点的距离之积为常数的点的轨迹是卡西尼卵形线.在平面直角坐标系中,设定点为,,,点O为坐标原点,动点满足(且为常数),化简得曲线E:.当,时,关于曲线E有下列四个命题:①曲线E既是轴对称图形,又是中心对称图形;②的最大值为;③的最小值为;④面积的最大值为.其中,正确命题的个数为()A.1个 B.2个C.3个 D.4个5.已知椭圆的短轴长为8,且一个焦点是圆的圆心,则该椭圆的左顶点为()A B.C. D.6.已知椭圆的左,右焦点分别为,,直线与C交于点M,N,若四边形的面积为且,则C的离心率为()A. B.C. D.7.函数在其定义域内可导,的图象如图所示,则导函数的图象为A. B.C. D.8.在等差数列中,若,且前n项和有最大值,则使得的最大值n为()A.15 B.16C.17. D.189.若椭圆的弦恰好被点平分,则所在的直线方程为()A. B.C. D.10.如图所示,用3种不同的颜色涂入图中的矩形A,B,C中,要求相邻的矩形不能使用同一种颜色,则不同的涂法有()ABCA.3种 B.6种C.12种 D.27种11.是直线与直线互相平行的()条件A.必要而不充分 B.充分而不必要C.充要 D.既不充分也不必要12.平面上动点到点的距离与它到直线的距离之比为,则动点的轨迹是()A.双曲线 B.抛物线C.椭圆 D.圆二、填空题:本题共4小题,每小题5分,共20分。13.已知直线(为常数)和圆,给出下列四个结论:①当变化时,直线恒过定点;②直线与圆可能无公共点;③若直线与圆有两个不同交点,,则线段的长的最小值为;④对任意实数,圆上都不存在关于直线对称的两个点.其中正确的结论是______.(写出所有正确结论的序号)14.记为等差数列的前n项和.若,则_________.15.阿基米德(公元前287—公元前212年)不仅是著名的物理学家,也是著名的数学家,他利用“逼近法”得到椭圆的面积除以圆周率等于椭圆的长半轴长与短半轴长的乘积.已知椭圆经过点,则当取得最大值时,椭圆的面积为_________16.若命题“,使得”为假命题,则实数a的取值范围是___________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,在三棱锥中,,点为线段上的点.(1)若平面,试确定点的位置,并说明理由;(2)若,,,在(1)成立的前提下,求二面角的余弦值.18.(12分)一杯100℃的开水放在室温25℃的房间里,1分钟后水温降到85℃,假设每分钟水温变化量和水温与室温之差成正比(1)分别求2分钟,3分钟后的水温;(2)记n分钟后的水温为,证明:是等比数列,并求出的通项公式;(3)当水温在40℃到55℃之间时(包括40℃和55℃),为最适合饮用的温度,则在水烧开后哪个时间段饮用最佳.(参考数据:)19.(12分)设函数.(1)若在点处的切线为,求a,b的值;(2)求的单调区间.20.(12分)如图1所示,在四边形ABCD中,,,,将△沿BD折起,使得直线AB与平面BCD所成的角为45°,连接AC,得到如图2所示的三棱锥(1)证明:平面ABD平面BCD;(2)若三棱锥中,二面角的大小为60°,求三棱锥的体积21.(12分)在①,②,③,这三个条件中任选一个,补充在下面的问题中,并解答问题在中,内角A,,的对边分别为,,,且满足______________(1)求;(2)若的面积为,在边上,且,求的最小值注:如果选择多个条件分别解答,按第一个解答计分22.(10分)某校从高一年级学生中随机抽取40名中学生,将他们的期中考试数学成绩(满分100分,成绩均为不低于40分的整数)分成六段:,,…,所得到如图所示的频率分布直图(1)求图中实数的值;(2)若该校高一年级共有640人,试估计该校高一年级期中考试数学成绩不低于60分的人数;(3)若从数学成绩在[40,50)与[90,100]两个分数段内的学生中随机选取两名学生,求这2名学生的数学成绩之差的绝对值不大于10的概率.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】根据题意设设,根据题意得到,进而求得离心率【详解】根据题意得到设,因为,所以,所以,则故选:C.2、C【解析】求出两圆的圆心和半径,根据圆心距与半径和与差的关系,判断圆与圆的位置关系【详解】圆:的圆心为,半径,圆:,即,圆心,半径,两圆的圆心距,显然,即,所以圆与圆相交.故选:C3、D【解析】根据命题的定义判断即可.【详解】因为能够判断真假的语句叫作命题,所以ABC错误,D正确.故选:D4、D【解析】①:根据轴对称图形、中心对称图形的方程特征进行判断即可;②:结合两点间距离公式、曲线方程特征进行判断即可;③:根据卡西尼卵形线的定义,结合基本不等式进行判断即可;④:根据方程特征,结合三角形面积公式进行判断即可.【详解】当,时,.①:因为以代方程不变,以代方程不变,同时代,以代方程不变,所以曲线E既是轴对称图形,又是中心对称图形,因此本命题正确;②:由,所以有,所以,当时成立,因此本命题正确;③:因为,所以,当且仅当时,取等号,因此本命题正确;④:,因为,所以,的面积为,因此本命题正确,故选:D【点睛】关键点睛:利用方程特征进行求解判断是解题的关键.5、D【解析】根据椭圆的一个焦点是圆的圆心,求得c,再根据椭圆的短轴长为8求得b即可.【详解】圆的圆心是,所以椭圆的一个焦点是,即c=3,又椭圆的短轴长为8,即b=4,所以椭圆长半轴长为,所以椭圆的左顶点为,故选:D6、A【解析】根据题意可知四边形为平行四边形,设,进而得,根据四边形面积求出点M的坐标,再代入椭圆方程得出关于e的方程,解方程即可.【详解】如图,不妨设点在第一象限,由椭圆的对称性得四边形为平行四边形,设点,由,得,因为四边形的面积为,所以,得,由,得,解得,所以,即点,代入椭圆方程,得,整理得,由,得,解得,由,得.故选:A7、D【解析】分析:根据函数单调性、极值与导数的关系即可得到结论.详解:观察函数图象,从左到右单调性先单调递增,然后单调递减,最后单调递增.对应的导数符号为正,负,正.,选项D的图象正确.故选D.点睛:本题主要考查函数图象的识别和判断,函数单调性与导数符号的对应关系是解题关键.8、A【解析】由题可得,则,可判断,,即可得出结果.【详解】前n项和有最大值,,,,,,,使得的最大值n为15.故选:A.【点睛】本题考查等差数列前n项和的有关判断,解题的关键是得出.9、D【解析】判断点M与椭圆的位置关系,再借助点差法求出直线AB的斜率即可计算作答.【详解】显然点椭圆内,设点,依题意,,两式相减得:,而弦恰好被点平分,即,则直线AB的斜率,直线AB:,即,所以所在的直线方程为.故选:D10、C【解析】根据给定信息,按用色多少分成两类,再分类计算作答.【详解】计算不同的涂色方法数有两类办法:用3种颜色,每个矩形涂一种颜色,有种方法,用2色,矩形A,C涂同色,有种方法,由分类加法计数原理得(种),所以不同的涂法有12种.故选:C11、B【解析】求出直线与平行的等价条件,再利用充分条件、必要条件的定义判断作答.【详解】由解得或,当时,与平行,当时,与平行,则直线与直线平行等价于或,所以是直线与直线互相平行的充分而不必要条件.故选:B12、A【解析】设点,利用距离公式化简可得出点的轨迹方程,即可得出动点的轨迹图形.【详解】设点,由题意可得,化简可得,即,曲线为反比例函数图象,故动点的轨迹是双曲线.故选:A.二、填空题:本题共4小题,每小题5分,共20分。13、③④【解析】由可判断①;根据直线过的定点在圆内可判断②;当直线与过圆心的直径垂直时,求出线段的长度可判断③;把圆心代入直线的方程可判断④.【详解】对于①,,当变化时,直线恒过定点,故错误;对于②,因为,所以在圆的内部,所以直线与圆总有公共点,故错误;对于③,当直线与过圆心的直径垂直时,线段的长度的最小,此时,故正确;对于④,把圆心代入直线,得对任意实数,圆上都不存在关于直线对称的两个点,故正确.故答案为:③④.14、5【解析】根据等差数列前项和的公式及等差数列的性质即可得出答案.【详解】解:,所以.故答案为:5.15、【解析】利用基本不等式得出取得最大值时的条件结合可知,再利用点在椭圆方程上,故可求得、的值,进而求出椭圆的面积.详解】由基本不等式可得,当且仅当时取得最大值,由可知,∵椭圆经过点,∴,解得,,则椭圆的面积为.故答案为:.16、(-1,0]【解析】将题意的命题转化条件为“,”为真命题,结合一元二次不等式恒成立即可得解.【详解】因为命题“,使得”是假命题,所以其否定“,”为真命题,即在R上恒成立.当时,不等式为,符合题意;当时,则需满足,解得;综上,实数的取值范围为.故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)点为MC的中点,理由见解析;(2)【解析】(1)由线面垂直得到线线垂直,进而由三线合一得到点为MC的中点;(2)作出辅助线,找到二面角的平面角,利用勾股定理求出各边长,用余弦定理求出答案.【小问1详解】点为MC的中点,理由如下:因为平面,平面,所以,,又,由三线合一得:点为MC的中点【小问2详解】取AB的中点H,连接PH,CH,则由(1)知:,结合点为MC的中点,所以PA=PB,故由三线合一得:PH⊥AB,且CH⊥AB,所以∠CHP即为二面角的平面角,因为,,,所以,,,由勾股定理得:,,,在△PCH中,由余弦定理得:,故二面角的余弦值为18、(1)2分钟的水温为℃,3分钟后的水温℃;(2)证明见解析,,;(3)在水烧开后4到7分钟饮用最佳.【解析】(1)根据给定条件设第n分钟后的水温为,探求出与的关系即可计算作答.(2)利用(1)的信息,列式变形、推导即可得证,进而求出的通项公式.(3)由(2)的结论列不等式,借助对数函数的性质求解即得.【小问1详解】设第n分钟后的水温为,正比例系数为k,记,依题意,,当时,,则有,解得,因此,,即有,,所以2分钟的水温为℃,3分钟后的水温℃.小问2详解】由(1)知,,时,,,则有,即,而,于是得是以为首项,为公比的等比数列,则有,即,所以是等比数列,的通项公式是,.【小问3详解】由(2)及已知得:,即,整理得,两边取常用对数得:,而,解得,即,所以在水烧开后4到7分钟饮用最佳.【点睛】思路点睛:涉及实际意义给出的数列问题,正确理解实际意义,列出关系式,再借助数列思想探求相邻两项间关系即可推理作答.19、(1),;(2)答案见解析.【解析】(1)已知切线求方程参数,第一步求导,切点在曲线,切点在切线,切点处的导数值为切线斜率.(2)第一步定义域,第二步求导,第三步令导数大于或小于0,求解析,即可得到答案.【小问1详解】的定义域为,,因为在点处的切线为,所以,所以;所以把点代入得:.即a,b的值为:,.【小问2详解】由(1)知:.①当时,在上恒成立,所以在单调递减;②当时,令,解得:,列表得:x-0+单调递减极小值单调递增所以,时,的递减区间为,单增区间为.综上所述:当时,在单调递减;当时,的递减区间为,单增区间为.【点睛】导函数中得切线问题第一步求导,第二步列切点在曲线,切点在切线,切点处的导数值为切线斜率这三个方程,可解切线相关问题.20、(1)证明见解析;(2).【解析】(1)过作面,连接,结合题设易知,根据过面外一点在该面上垂线性质知重合,再应用面面垂直的判定证明结论.(2)面中过作,结合题设构建空间直角坐标系,设并确定相关点坐标,求面、面法向量,应用空间向量夹角的坐标表示列方程求参数,最后由棱锥体积公式求体积.【小问1详解】由题设,易知:△是等腰直角三角形,即,将△沿BD折起过程中使直线AB与平面BCD所成的角为45°,此时过作面,连接,如下图示,所以,在△中,又且面,因为过平面外一点有且只有一条垂线段,故重合,此时面,又面,故平面ABD平面BCD;【小问2详解】在平面中过作,由(1)结论可构建如下图示的空间直角坐标系,由,,,若,则,故,,,若是面的一个法向量,则,若,则,若是面的一个法向量,则,若,则,所以,由二面角的大小为60°有,解得,故21、选择见解析;(1);(2)【解析】(1)选条件①.利用正弦定理边角互化,结合两角和的正弦公式可得,从而可得答案;选条件②.边角互化、切化弦,结合两角和的正弦公式可得,从而得答案;选条件③.边角互化,利用余弦定理可得,从而可得答案;(2)由三角形面积公式可得得,再利用余弦定理与基本不等式可得答案.【详解】(1)方案一:选条件①由可得,由正弦定理得,因为,所以,所以,故,又,于是,即,因为,所以方案二:选条件②因为,所以由正弦定理及同角三角函数的基本关系式,得,即,因为,所以,又,所以,因为,所以方案三:选条件③∵,∴,即,∴,∴又,所以(2)由题意知,得由余弦定理得,当且仅当且,即,时取等号,所以的最小值为22、(1)a=0.03;(2)544人;(3).【解析】(1)根据图中所有小矩形的面积之和等于1求解.
(2)根据频率分布直方图,得到成绩不低于60分的频率,再根据该校高一年级共有学生640人求解.
(3)由频率分布直方图得到成绩在[40,50)和[90,100]分数段内的人数,先列举出从数学成绩在[40,50)与[90,100]两个分数段内的学生中随机选取两名学生的基本事件总数,再得到两名学生的数学成绩之差的绝对值不大于10”的基本事件数,代入古典概型概率求解.【详解】(1)∵图中所有小矩形的面积之和等于1,∴10×(0
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度生物质能源项目股权分配合同范本3篇
- 2025年度风力发电场场地平整与风力塔安装施工协议4篇
- 2025年度城市绿化工程苗木采购合同3篇
- 二零二五年度能源项目100%股权转让合同3篇
- 专业旅客出行服务协议定制版
- 2024试用期工作关系协议范本版B版
- 2025年度临时场地租赁合同终止及场地恢复协议4篇
- 2025年度二零二五购物中心摊位租赁及营销支持合同4篇
- 2025年度详尽场景主播合作框架协议4篇
- 个人借款合同模板:无担保短期资金周转版B版
- 护理员技能培训课件
- 员工宿舍用电安全培训
- 家庭年度盘点模板
- 河南省郑州市2023-2024学年高二上学期期末考试 数学 含答案
- 2024年资格考试-WSET二级认证考试近5年真题集锦(频考类试题)带答案
- 试卷中国电子学会青少年软件编程等级考试标准python三级练习
- 公益慈善机构数字化转型行业三年发展洞察报告
- 饲料厂现场管理类隐患排查治理清单
- 【名著阅读】《红岩》30题(附答案解析)
- Starter Unit 2 同步练习人教版2024七年级英语上册
- 分数的加法、减法、乘法和除法运算规律
评论
0/150
提交评论