版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江西省赣州寻乌县二中2023年高二上数学期末学业质量监测试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知点在抛物线:上,点为抛物线的焦点,,点P到y轴的距离为4,则抛物线C的方程为()A. B.C. D.2.等比数列的前项和为,若,则()A. B.8C.1或 D.或3.函数在单调递增的一个必要不充分条件是()A. B.C. D.4.已知f(x)=x3+(a-1)x2+x+1没有极值,则实数a的取值范围是()A.[0,1] B.(-∞,0]∪[1,+∞)C.[0,2] D.(-∞,0]∪[2,+∞)5.已知实数x,y满足约束条件,则的最大值为()A. B.0C.3 D.56.已知各项均为正数的等比数列满足,若存在两项,使得,则的最小值为()A.4 B.C. D.97.若函数既有极大值又有极小值,则实数a的取值范围是()A. B.C. D.8.在平面直角坐标系xOy中,双曲线(,)的左、右焦点分别为,,点M是双曲线右支上一点,,且,则双曲线的离心率为()A. B.C. D.9.在平面上给定相异两点,设点在同一平面上且满足,当且时,点的轨迹是一个圆,这个轨迹最先由古希腊数学家阿波罗尼斯发现,故我们称这个圆为阿波罗尼斯圆.现有双曲线,为双曲线的左、右顶点,为双曲线的虚轴端点,动点满足,面积的最大值为,面积的最小值为,则双曲线的离心率为()A. B.C. D.10.“且”是“”的()A.充分不必要条件 B.必要不充分条件C充要条件 D.既不充分也不必要条件11.如图,在直三棱柱中,D为棱的中点,,,,则异面直线CD与所成角的余弦值为()A. B.C. D.12.对于圆上任意一点的值与x,y无关,有下列结论:①当时,r有最大值1;②在r取最大值时,则点的轨迹是一条直线;③当时,则.其中正确的个数是()A.3 B.2C.1 D.0二、填空题:本题共4小题,每小题5分,共20分。13.如图,在平行六面体中,底面是边长为1的正方形,的长度为2,且,则的长度为________14.已知函数,则________15.设函数,,对任意的,都有成立,则实数的取值范围是______16.已知直线和平面,且;①若异面,则至少有一个与相交;②若垂直,则至少有一个与垂直;对于以上命题中,所有正确的序号是___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在数列中,,,(1)设,证明:数列是等差数列;(2)求数列的前项和.18.(12分)已知椭圆的方程为,双曲线的左、右焦点分别是的左、右顶点,而的左、右顶点分别是的左、右焦点(1)求双曲线的方程;(2)若直线与双曲线恒有两个不同的交点和,且(其中为原点),求的取值范围19.(12分)已知的展开式中二项式系数和为16(1)求展开式中二项式系数最大的项;(2)设展开式中的常数项为p,展开式中所有项系数的和为q,求20.(12分)已知是数列的前n项和,且.(1)求数列的通项公式;(2)若,求的前n项和.21.(12分)已知函数,为的导函数(1)求的定义域和导函数;(2)当时,求函数的单调区间;(3)若对,都有成立,且存在,使成立,求实数a的取值范围22.(10分)已知圆C:,直线l:.(1)当a为何值时,直线l与圆C相切;(2)当直线l与圆C相交于A,B两点,且|AB|=时,求直线l的方程.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】由抛物线定义可得,注意开口方向.详解】设∵点P到y轴的距离是4∴∵,∴.得:.故选:D.2、C【解析】根据等比数列的前项和公式及等比数列通项公式即可求解.【详解】设等比数列的公比为,则因为,所以,即,解得或,所以或.故选:C.3、D【解析】求出导函数,由于函数在区间单调递增,可得在区间上恒成立,求出的范围,再根据充分必要条件的定义即可判断得解.【详解】由题得,函数在区间单调递增,在区间上恒成立,而在区间上单调递减,选项中只有是的必要不充分条件.选项AC是的充分不必要条件,选项B是充要条件.故选:D4、C【解析】求导得,再解不等式即得解.【详解】由得,根据题意得,解得故选:C5、D【解析】先画出可行域,由,得,作出直线,向上平移过点A时,取得最大值,求出点A的坐标,代入可求得结果【详解】不等式组表示的可行域,如图所示由,得,作出直线,向上平移过点A时,取得最大值,由,得,即,所以的最大值为,故选:D6、C【解析】由求得,代入求得,利用基本不等式求出它的最小值【详解】因为各项均为正数的等比数列满足,可得,即解得或(舍去)∵,,∴=当且仅当,即m=2,n=4时,等号成立故的最小值等于.故选:C【点睛】方法点睛:本题主要考查等比数列的通项公式和基本不等式的应用,解题的关键是常量代换的技巧,所谓常量代换,就是把一个常数用代数式来代替,如,再把常数6代换成已知中的m+n,即.常量代换是基本不等式里常用的一个技巧,可以优化解题,提高解题效率.7、B【解析】函数既有极大值又有极小值转化为导函数在定义域上有两个不同的零点.【详解】因为既有极大值又有极小值,且,所以有两个不等的正实数解,所以,且,解得,且.故选:B.8、A【解析】本题考查双曲线的定义、几何性质及直角三角形的判定即可解决.【详解】因为,,所以在中,边上的中线等于的一半,所以.因为,所以可设,,则,解得,所以,由双曲线的定义得,所以双曲线的离心率故选:A9、C【解析】先求动点的轨迹方程,再根据面积的最大值求得,根据的面积最小值求,由此可求双曲线的离心率.【详解】设,,,依题意得,即,两边平方化简得,所以动点的轨迹是圆心为,半径的圆,当位于圆的最高点时的面积最大,所以,解得;当位于圆的最左端时的面积最小,所以,解得,故双曲线的离心率为.故选:C.10、A【解析】按照充分必要条件的判断方法判断,“且”能否推出“”,以及“”能否推出“且”,判断得到正确答案,【详解】当且时,成立,反过来,当时,例:,不能推出且.所以“且”是“”的充分不必要条件.故选:A【点睛】本题考查充分不必要条件的判断,重点考查基本判断方法,属于基础题型.11、A【解析】以C为坐标原点,分别以,,方向为x,y,z轴的正方向,建立如图所示的空间直角坐标系.运用异面直线的空间向量求解方法,可求得答案.【详解】解:以C为坐标原点,分别以,,的方向为x,y,z轴的正方向,建立如图所示的空间直角坐标系.由已知可得,,,,则,,所以.又因为异面直线所成的角的范围为,所以异面直线与所成角的余弦值为.故选:A.12、B【解析】可以看作点到直线与直线距离之和的倍,的取值与,无关,这个距离之和与点在圆上的位置无关,圆在两直线内部,则,的距离为,则,,对于①,当时,r有最大值1,得出结论;对于②在r取最大值时,则点的轨迹是一条平行与,的直线,得出结论;对于③当时,则得出结论.【详解】设,故可以看作点到直线与直线距离之和的倍,的取值与,无关,这个距离之和与点在圆上的位置无关,可知直线平移时,点与直线,的距离之和均为,的距离,即此时圆在两直线内部,,的距离为,则,对于①,当时,r有最大值1,正确;对于②在r取最大值时,则点的轨迹是一条平行与,的直线,正确;对于③当时,则即,解得或,故错误.故正确结论有2个,故选:B.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】设一组基地向量,将目标用基地向量表示,然后根据向量的运算法则运算即可【详解】设,则有:则有:根据,解得:故答案为:14、.【解析】将代入计算,利用和互为相反数,作差可得,计算可得结果.【详解】解:函数则.,,作差可得:,即,解得:代入此时成立.故答案为:.15、【解析】首先求得函数在区间上的最大值,然后分离参数,利用导函数求最值即可确定实数的取值范围.【详解】∵在上恒成立,∴当时,取最大值1,∵对任意的,都有成立,∴在上恒成立,即在上恒成立,令,则,,∵在上恒成立,∴在上为减函数,∵当时,,故当时,取最大值1,故,故答案为【点睛】本题考查的知识点是函数恒成立问题,利用导数研究函数的单调性,利用导数研究函数的最值,难度中档16、①②【解析】假设与都不相交得到,得到①正确,若不垂直,上取一点,作交于,得到,得到②正确,得到答案.【详解】若与都不相交,,,则,同理,故,与异面矛盾,①正确;若不垂直,上取一点,作交于,,,故,,故,,,故,,,故,②正确.故答案为:①②.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)略(2)【解析】(1)题中条件,而要证明的是数列是等差数列,因此需将条件中所给的的递推公式转化为的递推公式:,从而,,进而得证;(2)由(1)可得,,因此数列的通项公式可以看成一个等差数列与等比数列的乘积,故可考虑采用错位相减法求其前项和,即有:①,①得:②,②-①得.试题解析:(1)∵,,又∵,∴,,∴则是为首项为公差的等差数列;由(1)得,∴,∴①,①得:②,②-①得.考点:1.数列的通项公式;2.错位相减法求数列的和.18、(1);(2)【解析】(1)求出椭圆的焦点和顶点,即得双曲线的顶点和焦点,从而易求得标准方程;(2)将代入,得由直线与双曲线交于不同的两点,得的取值范围,设,由韦达定理得则代入可求得的范围【详解】(1)设双曲线的方程为,则,再由,得故的方程为(2)将代入,得由直线与双曲线交于不同的两点,得①设则又,得,,即,解得②由①②得<k2<1,故的取值范围【点睛】本题考查双曲线的标准方程,考查直线与双曲线相交中的范围问题.应注意:(1)利用圆锥曲线的几何性质或判别式构造不等关系,从而确定参数的取值范围(2)利用已知参数的范围,求新参数的范围,解这类问题的核心是建立两个参数之间的等量关系(3)利用隐含的不等关系建立不等式,从而求出参数的取值范围(4)利用已知的不等关系构造不等式,从而求出参数的取值范围(5)利用求函数的值域的方法将待求量表示为其他变量的函数,求其值域,从而确定参数的取值范围19、(1)(2)【解析】(1)由二项式系数和的性质得出,再由性质求出展开式中二项式系数最大的项;(2)由通项得出,利用赋值法得出,再求解【小问1详解】由题意可得,解得.,展开式中二项式系数最大的项为;【小问2详解】,其展开式的通项为,令,得∴常数项令,可得展开式中所有项系数的和为,∴20、(1)(2)【解析】(1)当时,化简得到,进而得到数列的通项公式;(2)由(1)得到,结合裂项法,即可求解.【小问1详解】解:由题意,数列的前n项和,且,当时,,当时,,满足上式,所以数列的通项公式为.【小问2详解】解:由,可得,所以.21、(1),(2)在单减,也单减,无增区间(3)【解析】(1)根据分母不等于0,对数的真数大于零即可求得函数的定义域,根据基本初等函数的求导公式及商的导数公式即可求出函数的导函数;(2)求出函数的导函数,再根据导函数的符号即可得出答案;(3)若对,都有成立,即,即,令,,只要即可,利用导数求出函数的最小值即可求出的范围,,,求出函数的值域,根据存在,使成立,则0在函数的值域中,从而可得出的范围,即可得解.【小问1详解】解:的定义域为,;【小问2详解】解:当时,,恒成立,所以在和上递减;【小问3详解】解:若对,都有成立,即,即,令,,则,对于函数,,当时,,当时,,所以函数在上递增,在上递减,所以,当时,,所以,所以,故恒成立,在为减函数,所以,所以,由(1)知,,所以,记,令,,则原式的值域为,因为存在,使成立,所以,,所以,综上,【点睛】本题考查了函数的定义域及导数的四则运算,考查了
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024至2030年中国模拟输出式智能操作器数据监测研究报告
- 柜式空调室内课程设计
- 2024至2030年中国干贝味粉行业投资前景及策略咨询研究报告
- 2024年双耳小弧形锅项目可行性研究报告
- 2024年全玻璃真空管集热器项目可行性研究报告
- 连连看课程课程设计要求
- 模电课程设计数电恋爱
- 2024年中国空气层组织布市场调查研究报告
- 中国高流除菌过滤器行业应用态势及投资动态预测研究报告(2024-2030版)
- 2024年中国漂白木柄圆头锤市场调查研究报告
- 2024至2030年高分子吸水树脂项目投资价值分析报告
- 期中测试卷(1-5单元)(试题)-2024-2025学年三年级上册数学人教版
- DB11T 731-2010 室外照明干扰光限制规范
- 学校食堂消毒记录
- 塔吊使用安全协议书
- 中国近代史纲要试题及答案(全套)
- 地 理气温的变化和分布课时1课件-2024-2025学年七年级地理上册(人教版2024)
- Unit4+My+space++Reading++The+1940s+House+课件高中英语沪教版(2020)必修第一册
- 4.1 中国特色社会主义进入新时代 课件高中政治统编版必修一中国特色社会主义-1
- 海淀区高一年级第一学期期末数学试题含答案
- 2025年公务员考试时政专项测验100题及答案
评论
0/150
提交评论