新高考物理三轮冲刺突破练习专题15带电粒子在磁场中的运动(含解析)_第1页
新高考物理三轮冲刺突破练习专题15带电粒子在磁场中的运动(含解析)_第2页
新高考物理三轮冲刺突破练习专题15带电粒子在磁场中的运动(含解析)_第3页
新高考物理三轮冲刺突破练习专题15带电粒子在磁场中的运动(含解析)_第4页
新高考物理三轮冲刺突破练习专题15带电粒子在磁场中的运动(含解析)_第5页
已阅读5页,还剩21页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

专题15带电粒子在磁场中的运动目录TOC\o"1-2"\h\u专题11带电粒子在磁场中的运动 1考向一半径公式和周期公式的应用 2考查方式一半径与磁场的关系SKIPIF1<0 2考查方式二半径与动能的关系SKIPIF1<0 4考查方式三半径与动量的关系SKIPIF1<0 5考查方式四半径公式与比荷SKIPIF1<0 5考向二带电粒子在有界匀强磁场中的运动 6考查方式一直线边界磁场 7考查方式二平行边界磁场 9考查方式三圆形边界磁场 11考查方式四三角形边界磁场 13考向三带电粒子在匀强磁场中运动的临界极值问题 14一、带电粒子在磁场中的直线运动 (1)带电粒子沿与磁感应线平行的方向进入电场,带电粒子将直线运动;(2)磁场力与重力、电磁力或其他力的合理为零时,带电粒子将作直线运动;二、带电粒子在复合场中做匀速圆周运动1.圆心的确定(1)已知入射点、入射方向和出射点、出射方向时,可通过入射点和出射点作垂直于入射方向和出射方向的直线,两条直线的交点就是圆弧轨道的圆心(如图甲所示).(2)已知入射方向和入射点、出射点的位置时,可以通过入射点作入射方向的垂线,连接入射点和出射点,作其中垂线,这两条垂线的交点就是圆弧轨道的圆心(如图乙所示).2.半径的确定和计算利用平面几何关系,求出该圆的可能半径(或圆心角),求解时注意以下几何特点:粒子速度的偏向角(φ)等于圆心角(α),并等于AB弦与切线的夹角(弦切角θ)的2倍(如图),即φ=α=2θ=ωt.3.运动时间的确定粒子在磁场中运动一周的时间为T,当粒子运动的圆弧所对应的圆心角为α时,其运动时间可由下式表示:t=eq\f(α,360°)T(或t=eq\f(α,2π)T),t=eq\f(l,v)(l为弧长).三、带电粒子在磁场中的运动考向一半径公式和周期公式的应用考查方式一半径与磁场的关系SKIPIF1<0【典例1】正电子是电子的反粒子,与电子质量相同、带等量正电荷。在云室中有垂直于纸面的匀强磁场,从P点发出两个电子和一个正电子,三个粒子运动轨迹如图中1、2、3所示。下列说法正确的是()A.磁场方向垂直于纸面向里 B.轨迹1对应的粒子运动速度越来越大C.轨迹2对应的粒子初速度比轨迹3的大 D.轨迹3对应的粒子是正电子【答案】A【详解】AD.根据题图可知,1和3粒子绕转动方向一致,则1和3粒子为电子,2为正电子,电子带负电且顺时针转动,根据左手定则可知磁场方向垂直纸面向里,A正确,D错误;B.电子在云室中运行,洛伦兹力不做功,而粒子受到云室内填充物质的阻力作用,粒子速度越来越小,B错误;C.带电粒子若仅在洛伦兹力的作用下做匀速圆周运动,根据牛顿第二定律可知SKIPIF1<0解得粒子运动的半径为SKIPIF1<0根据题图可知轨迹3对应的粒子运动的半径更大,速度更大,粒子运动过程中受到云室内物质的阻力的情况下,此结论也成立,C错误。故选A。[变式]一个静止的放射性原子核SKIPIF1<0发生衰变后放出粒子并生成新核,衰变后放出的粒子和生成的新核速度方向均垂直于磁场方向,运动轨迹如图所示,则以下结论中正确的是()A.发生的是α衰变B.轨迹1是放出粒子的径迹,轨迹2是生成的新核的径迹C.生成的新核逆时针方向运动,放出粒子顺时针方向运动D.生成的新核含有143个中子【答案】BCD【详解】ABC.设质量为m、电荷量为q的粒子在磁感应强度大小为B的匀强磁场中做速率为v、半径为R的匀速圆周运动,则根据牛顿第二定律有SKIPIF1<0

解得SKIPIF1<0

衰变过程动量守恒,而系统初动量为零,则根据反冲运动规律可知生成新核和放出粒子动量大小相等,而新核的电荷量一定比粒子的电荷量大,所以新核的轨迹半径较小,粒子的轨迹半径较大,则轨迹1是放出粒子的径迹,轨迹2是生成的新核的径迹,又因为新核带正电,根据左手定则可以判定新核一定沿逆时针方向运动,进而可知发生衰变瞬间新核速度向下,而粒子速度向上,再根据左手定则可知粒子带负电,且沿顺时针方向运动,发生的衰变为β衰变,故A错误,BC正确;D.根据电荷数守恒和质量守恒可知生成的新核的质量数为234,电荷数为91,所以中子数(等于质量数减电荷数)为143,故D正确。故选BCD。考查方式二半径与动能的关系SKIPIF1<0【典例2】如图,MN为铝质薄平板,铝板上方和下方分别有垂直于图平面的匀强磁场(未画出)。一带电粒子从紧贴铝板上表面的P点垂直于铝板向上射出,从Q点穿越铝板后到达PQ的中点O。已知粒子穿越铝板时,其动能损失一半,速度方向和电荷量不变,不计重力。铝板上方和下方的磁感应强度大小之比()A.2 B.SKIPIF1<0 A.1 A.SKIPIF1<0【答案】D【解析】由题意知粒子穿越铝板时,其动能损失一半设粒子在铝板上方的动能为SKIPIF1<0上下的磁感应强度分别为SKIPIF1<0、SKIPIF1<0有几何关系可知上下方的轨迹半径满足SKIPIF1<0,又SKIPIF1<0则:SKIPIF1<0得SKIPIF1<0考查方式三半径与动量的关系SKIPIF1<0【典例3】如图所示,匀强磁场的方向垂直纸面向里,一带电微粒从磁场边界d点垂直于磁场方向射入,沿曲线dpa打到屏MN上的a点,通过pa段用时为I2若该微粒经过P点时,与一个静止的不带电微粒碰撞并结合为一个新微粒,最终打到屏MN上。两个微粒所受重力均忽略。新微粒运动的()

A.轨迹为pb,至屏幕的时间将小于tB.轨迹为pc,至屏幕的时间将大于t

C.轨迹为pb,至屏幕的时间将等于tD.轨迹为pa,至屏幕的时间将大于t【答案】D【解析】设两微粒的质量分别为m、M碰撞前粒子的轨迹半径为SKIPIF1<0①碰撞过程:SKIPIF1<0②碰撞后粒子的轨迹半径为SKIPIF1<0③①②③可得SKIPIF1<0④所以粒子仍沿pa运动由SKIPIF1<0及SKIPIF1<0可知碰撞后微粒质量增大周期增大圆心角不变所以时间变长。考查方式四半径公式与比荷SKIPIF1<0【典例4】如图所示,直角三角形ABC区域中存在一匀强磁场,比荷相同的两个粒子(不计重力)沿AB方向射入磁场,分别从AC边上的P、Q两点射出,则()从P点射出的粒子速度大B.从Q点射出的粒子向心力加速度大C.从P点射出的粒子角速度大D.两个粒子在磁场中运动的时间一样长【答案】BD【解析】粒子在磁场中做匀速圆周运动,运动轨迹如图所示,根据几何关系(图示弦切角相等),粒子在磁场中偏转的圆心角相等,根据粒子在磁场中运动的时间t=eq\f(θ,2π)T,又因为粒子在磁场中做圆周运动的周期T=eq\f(2πm,qB),可知粒子在磁场中运动的时间相等,选项D正确,C错误;由图知,粒子运动的半径RP<RQ,由粒子在磁场中做圆周运动的半径R=eq\f(mv,Bq)知粒子运动速度vP<vQ,选项A错误,B正确考向二带电粒子在有界匀强磁场中的运动1.带电粒子在磁场中做匀速圆周运动解题“三步法”2.在轨迹中寻求边角关系时,一定要关注三个角的联系:圆心角、弦切角、速度偏角;它们的大小关系为:圆心角等于速度偏角,圆心角等于2倍的弦切角.在找三角形时,一般要寻求直角三角形,利用勾股定理或三角函数求解问题.3.解决带电粒子在边界磁场中运动的问题时,一般注意以下两种情况:(1)直线边界中的临界条件为与直线边界相切,并且从直线边界以多大角度射入,还以多大角度射出;(2)在圆形边界磁场中运动时,如果沿着半径射入,则一定沿着半径射出.考查方式一直线边界磁场直线边界,粒子进出磁场具有对称性(如图3所示)图a中粒子在磁场中运动的时间t=eq\f(T,2)=eq\f(πm,Bq)图b中粒子在磁场中运动的时间t=(1-eq\f(θ,π))T=(1-eq\f(θ,π))eq\f(2πm,Bq)=eq\f(2mπ-θ,Bq)图c中粒子在磁场中运动的时间t=eq\f(θ,π)T=eq\f(2θm,Bq)【典例5】如图,在坐标系的第一和第二象限内存在磁感应强度大小分别为和B、方向均垂直于纸面向外的匀强磁场。一质量为m、电荷量为q(q>0)的粒子垂直于x轴射入第二象限,随后垂直于y轴进入第一象限,最后经过x轴离开第一象限。粒子在磁场中运动的时间为()A. B. C. D.【答案】B【解析】运动轨迹如图。即运动由两部分组成,第一部分是个周期,第二部分是个周期,粒子在第二象限运动转过的角度为90°,则运动的时间为;粒子在第一象限转过的角度为60°,则运动的时间为;则粒子在磁场中运动的时间为:,故B正确,ACD错误。[变式1]如图,直线OP上方分布着垂直纸面向里的匀强磁场,从粒子源O在纸面内沿不同的方向先后发射速率均为v的质子1和2,两个质子都过P点.已知OP=a,质子1沿与OP成30°角的方向发射,不计质子的重力和质子间的相互作用力,则()A.质子1在磁场中运动的半径为eq\f(1,2)aB.质子2在磁场中的运动周期为eq\f(2πa,v)C.质子1在磁场中的运动时间为eq\f(2πa,3v)D.质子2在磁场中的运动时间为eq\f(5πa,6v)【答案】B【解析】根据题意作出质子运动轨迹如图所示:由几何知识可知,质子在磁场中做圆周运动的轨道半径:r=a,故A错误;质子在磁场中做圆周运动的周期:T=eq\f(2πr,v)=eq\f(2πa,v),故B正确;由几何知识可知,质子1在磁场中转过的圆心角:θ1=60°,质子1在磁场中的运动时间:t1=eq\f(θ1,360°)T=eq\f(1,6)T=eq\f(πa,3v),故C错误;由几何知识可知,质子2在磁场中转过的圆心角:θ2=300°,质子2在磁场中的运动时间:t2=eq\f(θ2,360°)T=eq\f(5πa,3v),故D错误.[变式2]如图所示,直线MN左下侧空间存在范围足够大、方向垂直纸面向里的匀强磁场,磁感应强度大小为B,在磁场中P点有一个粒子源,可在纸面内向各个方向射出质量为m、电荷量为q的带正电粒子(重力不计),已知∠POM=60°,PO间距为L,粒子速率均为v=eq\f(\r(3)qBL,2m),则粒子在磁场中运动的最短时间为()A.eq\f(πm,2qB)B.eq\f(πm,3qB)C.eq\f(πm,4qB)D.eq\f(πm,6qB)【答案】B【解析】粒子在磁场中做圆周运动,洛伦兹力提供向心力,则有:Bvq=eq\f(mv2,R),解得:R=eq\f(mv,Bq)=eq\f(m,Bq)·eq\f(\r(3)BqL,2m)=eq\f(\r(3),2)L;粒子做圆周运动的周期为:T=eq\f(2πR,v)=eq\f(\r(3)πL,\f(\r(3)BqL,2m))=eq\f(2πm,Bq);因为粒子做圆周运动的半径、周期都不变,那么,粒子转过的圆心角越小,则其弦长越小,运动时间越短;所以,过P点作MN的垂线,可知,粒子运动轨迹的弦长最小为:Lsin60°=eq\f(\r(3),2)L=R,故最短弦长对应的圆心角为60°,所以,粒子在磁场中运动的最短时间为:tmin=eq\f(1,6)T=eq\f(πm,3Bq),故A、C、D错误,B正确.考查方式二平行边界磁场平行边界存在临界条件(如图所示)图a中粒子在磁场中运动的时间t1=eq\f(θm,Bq),t2=eq\f(T,2)=eq\f(πm,Bq)图b中粒子在磁场中运动的时间t=eq\f(θm,Bq)图c中粒子在磁场中运动的时间t=(1-eq\f(θ,π))T=(1-eq\f(θ,π))eq\f(2πm,Bq)=eq\f(2mπ-θ,Bq)图d中粒子在磁场中运动的时间t=eq\f(θ,π)T=eq\f(2θm,Bq)【典例6】如图,边长为l的正方形abcd内存在匀强磁场,磁感应强度大小为B,方向垂直于纸面(abcd所在平面)向外。ab边中点有一电子发射源O,可向磁场内沿垂直于ab边的方向发射电子。已知电子的比荷为k。则从a、d两点射出的电子的速度大小分别为()A., B.,C., D.,【答案】B【解析】a点射出粒子半径Ra==,得:va==,d点射出粒子半径为,R=,故vd==,故B选项符合题意[变式1]如图所示,在0≤x≤3a的区域内存在与xOy平面垂直的匀强磁场,磁感应强度大小为B.在t=0时刻,从原点O发射一束等速率的相同的带电粒子,速度方向与y轴正方向的夹角分布在0°~90°范围内.其中,沿y轴正方向发射的粒子在t=t0时刻刚好从磁场右边界上P(3a,eq\r(3)a)点离开磁场,不计粒子重力,下列说法正确的是()A.粒子在磁场中做圆周运动的半径为3aB.粒子的发射速度大小为eq\f(4πa,t0)C.带电粒子的比荷为eq\f(4π,3Bt0)D.带电粒子在磁场中运动的最长时间为2t0【答案】D【解析】根据题意作出沿y轴正方向发射的带电粒子在磁场中做圆周运动的运动轨迹如图所示,圆心为O′,根据几何关系,可知粒子做圆周运动的半径为r=2a,故A错误;沿y轴正方向发射的粒子在磁场中运动的圆心角为eq\f(2π,3),运动时间t0=eq\f(\f(2π,3)×2a,v0),解得:v0=eq\f(4πa,3t0),选项B错误;沿y轴正方向发射的粒子在磁场中运动的圆心角为eq\f(2π,3),对应运动时间为t0,所以粒子运动的周期为T=3t0,由Bqv0=mSKIPIF1<0r,则eq\f(q,m)=eq\f(2π,3Bt0),故C错误;在磁场中运动时间最长的粒子的运动轨迹如图所示,由几何知识得该粒子做圆周运动的圆心角为eq\f(4π,3),在磁场中的运动时间为2t0,故D正确.[变式2]如图所示为一有界匀强磁场,磁感应强度大小为B,方向垂直纸面向外,MN、PQ为其两个边界,两边界间的距离为L.现有两个带负电的粒子同时从A点以相同速度沿与PQ成30°的方向垂直射入磁场,结果两粒子又同时离开磁场.已知两带负电的粒子质量分别为2m和5m,电荷量大小均为q,不计粒子重力及粒子间的相互作用,则粒子射入磁场时的速度为()A.eq\f(\r(3)BqL,6m)B.eq\f(\r(3)BqL,15m)C.eq\f(BqL,2m)D.eq\f(BqL,5m)【答案】B【解析】由于两粒子在磁场中运动时间相等,则两粒子一定是分别从MN边和PQ边离开磁场的,如图所示,由几何知识可得质量为2m的粒子对应的圆心角为300°,由t=eq\f(θ,2π)T得质量为5m的粒子对应的圆心角为120°,由图可知△OCD为等边三角形,可求得R=eq\f(\r(3),3)L,由Bqv=eq\f(5mv2,R)得v=eq\f(\r(3)BqL,15m),B正确.考查方式三圆形边界磁场沿径向射入圆形磁场的粒子必沿径向射出,运动具有对称性(如图9所示)粒子做圆周运动的半径r=eq\f(R,tanθ)粒子在磁场中运动的时间t=eq\f(θ,π)T=eq\f(2θm,Bq)θ+α=90°【典例7】如图,虚线所示的圆形区域内存在一垂直于纸面的匀强磁场,P为磁场边界上的一点,大量相同的带电粒子以相同的速率经过P点,在纸面内沿不同的方向射入磁场,若粒子射入速率为v1,这些粒子在磁场边界的出射点分布在六分之一圆周上;若粒子射入速率为v2,相应的出射点分布在三分之一圆周上,不计重力及带电粒子之间的相互作用,则v2∶v1为()A.eq\r(3)∶2B.eq\r(2)∶1C.eq\r(3)∶1D.3∶eq\r(2)【答案】C【解析】设圆形磁场半径为R,若粒子射入的速率为v1,轨迹如图甲所示,由几何知识可知,粒子运动的轨道半径为r1=Rcos60°=eq\f(1,2)R;若粒子射入的速率为v2,轨迹如图乙所示,由几何知识可知,粒子运动的轨道半径为r2=Rcos30°=eq\f(\r(3),2)R;根据轨道半径公式r=eq\f(mv,qB)可知,v2∶v1=r2∶r1=eq\r(3)∶1,故选项C正确.甲乙[变式](多选)如图所示,在半径为R的圆形区域内充满磁感应强度为B的匀强磁场,MN是一竖直放置的感光板.从圆形磁场最高点P以速度v垂直磁场正对着圆心O射入带正电的粒子,且粒子所带电荷量为q、质量为m,不考虑粒子重力,关于粒子的运动,以下说法正确的是()A.粒子在磁场中通过的弧长越长,运动时间也越长B.射出磁场的粒子其出射方向的反向延长线也一定过圆心OC.射出磁场的粒子一定能垂直打在MN上D.只要速度满足v=eq\f(qBR,m),入射的粒子出射后一定垂直打在MN上【答案】BD【解析】速度不同的同种带电粒子在磁场中做匀速圆周运动的周期相等,对着圆心入射的粒子,速度越大在磁场中轨道半径越大,弧长越长,轨迹对应的圆心角θ越小,由t=eq\f(θ,2π)T知,运动时间t越小,故A错误;带电粒子的运动轨迹是圆弧,根据几何知识可知,对着圆心入射的粒子,其出射方向的反向延长线一定过圆心,故B正确;速度不同,半径不同,轨迹对应的圆心角不同,对着圆心入射的粒子,出射后不一定垂直打在MN上,与粒子的速度有关,故C错误;速度满足v=eq\f(qBR,m)时,粒子的轨迹半径为r=eq\f(mv,qB)=R,入射点、出射点、O点与轨迹的圆心构成菱形,射出磁场时的轨迹半径与最高点的磁场半径垂直,粒子一定垂直打在MN板上,故D正确.考查方式四三角形边界磁场【例题8】(多选)如图所示,有一垂直于纸面向外的有界匀强磁场,磁场的磁感应强度为B,其边界为一边长为L的正三角形(边界上有磁场),A、B、C为三角形的三个顶点.今有一质量为m、电荷量为+q的粒子(不计重力),以速度v=eq\f(\r(3)qBL,4m)从AB边上的某点P既垂直于AB边又垂直于磁场的方向射入磁场,然后从BC边上某点Q射出.若从P点射入的该粒子能从Q点射出,则()A.PB<eq\f(1+\r(3),4)L B.PB<eq\f(2+\r(3),4)LC.QB≤eq\f(\r(3),4)L D.QB≤eq\f(1,2)L【答案】BD【解析】粒子在磁场中运动的轨迹如图所示:粒子在磁场中的运动轨迹半径为r=eq\f(mv,Bq),因此可得r=eq\f(\r(3),4)L,当入射点为P1,圆心为O1,且此刻轨迹正好与BC相切时,PB取得最大值,若粒子从BC边射出,根据几何关系有PB<P1B=eq\f(2+\r(3),4)L,A错误,B正确;当运动轨迹为弧P2Q时,即O2Q与AB垂直时,此刻QB取得最大值,根据几何关系有QB=eq\f(r,sin60°)=eq\f(1,2)L,所以有QB≤eq\f(1,2)L,C错误,D正确.考向三带电粒子在匀强磁场中运动的临界极值问题临界极值问题的分析方法(1)数学方法和物理方法的结合:如利用“矢量图”“边界条件”等求临界值,利用“三角函数”“不等式的性质”“二次方程的判别式”等求极值.(2)一个“解题流程”,突破临界问题(3)从关键词找突破口:许多临界问题,题干中常用“恰好”“最大”“至少”“不相撞”“不脱离”等词语对临界状态给以暗示,审题时,一定要抓住这些特定的词语挖掘其隐藏的规律,找出临界条件.考查方式一带电粒子在匀强磁场中运动的临界问题【典例9】平面OM和平面ON之间的夹角为30°,其横截面(纸面)如图所示,平面OM上方存在匀强磁场,磁感应强度大小为B,方向垂直于纸面向外.一带电粒子的质量为m,电荷量为q(q>0).粒子沿纸面以大小为v的速度从OM的某点向左上方射入磁场,速度与OM成30°角.已知该粒子在磁场中的运动轨迹与ON只有一个交点,并从OM上另一点射出磁场.不计重力.粒子离开磁场的出射点到两平面交线O的距离()A.eq\f(mv,2qB)B.eq\f(\r(3)mv,qB)C.eq\f(2mv,qB)D.eq\f(4mv,qB)【答案】D【解析】根据题意画出带电粒子的运动轨迹,粒子在磁场中的运动轨迹与ON只有一个交点,故轨迹与ON相切,粒子出磁场的位置与切点的连线是粒子做圆周运动的直径,大小为eq\f(2mv,qB),根据几何知识可知,粒子离开磁场的出射点到两平面交线O的距离为d=eq\f(\f(2mv,qB),sin30°)=eq\f(4mv,qB),选项D正确【升华总结】解决带电粒子的临界问题的技巧方法(1)刚好穿出磁场边界的条件是带电粒子在磁场中运动的轨迹与边界相切.(2)当速率v一定时,弧长越长,圆心角越大,则带电粒子在有界磁场中运动的时间越长.(3)当速率v变化时,圆心角大的,运动时间长,解题时一般要根据受力情况和运动情况画出运动轨迹的草图,找出圆心,根据几何关系求出半径及圆心角等.(4)在圆形匀强磁场中,当运动轨迹圆半径大于区域圆半径时,则入射点和出射点为磁场直径的两个端点时,轨迹对应的偏转角最大(所有的弦长中直径最长).[变式]如图所示,在边长为2a的正三角形区域内存在方向垂直于纸面向里的匀强磁场.一个质量为m、电荷量为-q(q>0)的带电粒子(重力不计)从AB边的中心O以速度v进入磁场,粒子进入磁场时的速度方向垂直于磁场且与AB边的夹角为60°,若要使粒子能从AC边穿出磁场,则匀强磁场的大小B需满足()A.B>eq\f(\r(3)mv,3aq) B.B<eq\f(\r(3)mv,3aq)C.B>eq\f(\r(3)mv,aq) D.B<eq\f(\r(3)mv,aq)【答案】B【解析】若粒子达到C点时,其运动轨迹刚好与AC相切,如图所示,则粒子运动的半径为r0=eq\f(a,tan30°)=eq\r(3)a.由r=eq\f(mv,qB)得,粒子要能从AC边射出,粒子运行的半径应满足r>r0,解得B<eq\f(\r(3)mv,3aq),选项B正确.考查方式二带电粒子在匀强磁场中运动的极值问题【典例10】如图所示,两个同心圆,半径分别为r和2r,在两圆之间的环形区域内存在垂直纸面向里的匀强磁场,磁感应强度为B.圆心O处有一放射源,放出粒子的质量为m、带电量为-q(q>0),假设粒子速度方向都和纸面平行.(1)图中箭头表示某一粒子初速度的方向,OA与初速度方向夹角为60°,要想使该粒子经过磁场后第一次通过A点,则初速度的大小是多少?(2)要使粒子不穿出环形区域,则粒子的初速度不能超过多少?【答案】(1)eq\f(\r(3)Bqr,3m)(2)eq\f(3Bqr,4m)【解析】(1)如图甲所示,设粒子在磁场中的轨道半径为R1,则由几何关系得R1=eq\f(\r(3)r,3)又qv1B=meq\f(v\o\al(2,1),R1)得v1=eq\f(\r(3)Bqr,3m).(2)如图乙所示,设粒子轨迹与磁场外边界相切时,粒子在磁场中的轨道半径为R2,则由几何关系有(2r-R2)2=Req\o\al(2,2)+r2可得R2=eq\f(3r,4),又qv2B=meq\f(v\o\al(2,2),R2),可得v2=eq\f(3Bqr,4m)故要使粒子不穿出环形区域,粒子的初速度不能超过eq\f(3Bqr,4m).[变式]如图所示,半径为r的圆形区域内有垂直纸面向里的匀强磁场,磁感应强度大小为B,磁场边界上A点有一粒子源,源源不断地向磁场发射各种方向(均平行于纸面)且速度大小相等的带正电的粒子(重力不计),已知粒子的比荷为k,速度大小为2kBr.则粒子在磁场中运动的最长时间()A.eq\f(π,kB)B.eq\f(π,2kB)C.eq\f(π,3kB)D.eq\f(π,4kB)【答案】C【解析】粒子在磁场中运动的半径为R=eq\f(mv,qB)=eq\f(2kBr,Bk)=2r;当粒子在磁场中运动时间最长时,其轨迹对应的圆心角最大,此时弦长最大,其最大值为磁场圆的直径2r,故t=eq\f(T,6)=eq\f(πm,3qB)=eq\f(π,3kB),故C正确.

【题型演练】(多选)有两个匀强磁场区域Ⅰ和Ⅱ,Ⅰ中的磁感应强度是Ⅱ中的k倍.两个速率相同的电子分别在两磁场区域做圆周运动.与Ⅰ中运动的电子相比,Ⅱ中的电子()A.运动轨迹的半径是Ⅰ中的k倍B.加速度的大小是Ⅰ中的k倍C.做圆周运动的周期是Ⅰ中的k倍D.做圆周运动的角速度与Ⅰ中的相等【答案】AC【解析】两速率相同的电子在两匀强磁场中做匀速圆周运动,且Ⅰ中磁场磁感应强度B1是Ⅱ中磁场磁感应强度B2的k倍.由qvB=eq\f(mv2,r)得r=eq\f(mv,qB)∝eq\f(1,B),即Ⅱ中电子运动轨迹的半径是Ⅰ中的k倍,选项A正确;由F合=ma得a=eq\f(F合,m)=eq\f(qvB,m)∝B,所以eq\f(a2,a1)=eq\f(1,k),选项B错误;由T=eq\f(2πr,v)得T∝r,所以eq\f(T2,T1)=k,选项C正确;由ω=eq\f(2π,T)得eq\f(ω2,ω1)=eq\f(T1,T2)=eq\f(1,k),选项D错误.如图是比荷相同的a、b两粒子从O点垂直匀强磁场进入正方形区域的运动轨迹,则()A.a的质量比b的质量大B.a带正电荷,b带负电荷C.a在磁场中的运动速率比b的大D.a在磁场中的运动时间比b的短【答案】CD【解析】比荷相同的a、b两粒子,因电荷量无法确定,则质量大小无法比较,故A错误;初始时刻两粒子所受的洛伦兹力方向都是竖直向下,根据左手定则知,两粒子都带负电荷,故B错误;根据题图可知,a粒子的半径大于b粒子的,根据qvB=meq\f(v2,r)得,r=eq\f(mv,qB),则eq\f(q,m)=eq\f(v,Br),因它们比荷相同,即半径越大时,速率越大,故C正确;粒子在磁场中的运动周期T=eq\f(2πm,qB),比荷相同,两粒子运动周期相同,由题图可知,a粒子对应的圆心角小于b粒子的,则知a在磁场中的运动时间比b的短,故D正确.如图所示,平面直角坐标系的第Ⅰ象限内有一匀强磁场垂直于纸面向里,磁感应强度为B.一质量为m、电荷量为q的粒子以速度v从O点沿着与y轴夹角为30°的方向进入磁场,运动到A点时速度方向与x轴的正方向相同,不计粒子的重力,则()A.该粒子带正电B.A点与x轴的距离为eq\f(mv,2qB)C.粒子由O到A经历时间t=eq\f(πm,3qB)D.运动过程中粒子的速度不变【答案】BC【解析】由左手定则可判断该粒子带负电,选项A错误;根据粒子运动轨迹,A点离x轴的距离为r(1-cosθ)=eq\f(mv,Bq)·(1-cos60°)=eq\f(mv,2Bq),选项B正确;t=eq\f(θ,2π)T=eq\f(πm,3qB),选项C正确;运动过程中粒子速度大小不变,方向时刻改变,选项D错误.如图所示,垂直于纸面向里的匀强磁场分布在正方形abcd区域内,O点是cd边的中点.一个带正电的粒子仅在磁场力的作用下,从O点沿纸面以垂直于cd边的速度射入正方形内,经过时间t0后刚好从c点射出磁场.现设法使该带电粒子从O点沿纸面以与Od成30°角的方向,以大小不同的速率射入正方形内,那么下列说法中正确的是()A.若该带电粒子在磁场中经历的时间是eq\f(5,3)t0,则它一定从cd边射出磁场B.若该带电粒子在磁场中经历的时间是eq\f(2,3)t0,则它一定从ad边射出磁场C.若该带电粒子在磁场中经历的时间是eq\f(5,4)t0,则它一定从bc边射出磁场D.若该带电粒子在磁场中经历的时间是t0,则它一定从ab边射出磁场【答案】AC【解析】如图所示,作出刚好从ab边射出的轨迹①、刚好从bc边射出的轨迹②、从cd边射出的轨迹③和刚好从ad边射出的轨迹④.由从O点沿纸面以垂直于cd边的速度射入正方形内,经过时间t0后刚好从c点射出磁场可知,带电粒子在磁场中做圆周运动的周期是2t0,可知,从ad边射出磁场经历的时间一定小于eq\f(1,3)t0;从ab边射出磁场经历的时间一定大于等于eq\f(1,3)t0,小于eq\f(5,6)t0;从bc边射出磁场经历的时间一定大于等于eq\f(5,6)t0,小于eq\f(4,3)t0;从cd边射出磁场经历的时间一定是eq\f(5,3)t0.故选项A、C正确,B、D错误.如图所示,在赤道处,将一小球向东水平抛出,落地点为a;给小球带上电荷后,仍以原来的速度抛出,考虑地磁场的影响,下列说法正确的是()A.无论小球带何种电荷,小球仍会落在a点B.无论小球带何种电荷,小球下落时间都会延长C.若小球带负电荷,小球会落在更远的b点D.若小球带正电荷,小球会落在更远的b点【答案】D.【解析】地磁场在赤道上空水平由南向北,从南向北观察,如果小球带正电荷,则洛伦兹力斜向右上方,该洛伦兹力在竖直向上的方向和水平向右方向均有分力,因此,小球落地时间会变长,水平位移会变大;同理,若小球带负电,则小球落地时间会变短,水平位移会变小,故D正确.“人造小太阳”托卡马克装置使用强磁场约束高温等离子体,使其中的带电粒子被尽可能限制在装置内部,而不与装置器壁碰撞.已知等离子体中带电粒子的平均动能与等离子体的温度T成正比,为约束更高温度的等离子体,则需要更强的磁场,以使带电粒子在磁场中的运动半径不变.由此可判断所需的磁感应强度B正比于()A.eq\r(T)B.TC.eq\r(T3)D.T2【答案】A【解析】考查带电粒子在磁场中的圆周运动问题.由题意知,带电粒子的平均动能Ek=eq\f(1,2)mv2∝T,故v∝eq\r(T).由qvB=eq\f(mv2,R)整理得:B∝eq\r(T),故选项A正确.如图所示,一个理想边界为PQ、MN的匀强磁场区域,磁场宽度为d,方向垂直纸面向里.一电子从O点沿纸面垂直PQ以速度v0进入磁场.若电子在磁场中运动的轨道半径为2d.O′在MN上,且OO′与MN垂直.下列判断正确的是 ()A.电子将向右偏转B.电子打在MN上的点与O′点的距离为dC.电子打在MN上的点与O′点的距离为eq\r(3)dD.电子在磁场中运动的时间为eq\f(πd,3v0)【答案】D【解析】电子带负电,进入磁场后,根据左手定则判断可知,所受的洛伦兹力方向向左,电子将向左偏转,如图所示,A错误;设电子打在MN上的点与O′点的距离为x,则由几何知识得:x=r-eq\r(r2-d2)=2d-SKIPIF1<0=(2-eq\r(3))d,故B、C错误;设轨迹对应的圆心角为θ,由几何知识得:sinθ=eq\f(d,2d)=0.5,得θ=eq\f(π,6),则电子在磁场中运动的时间为t=eq\f(θr,v0)=eq\f(πd,3v0),故D正确.如图所示,一束电子以大小不同的速率沿图示方向垂直飞入横截面是一正方形的匀强磁场区域,下列判断正确的是()电子在磁场中运动时间越长,其轨迹线越长B.电子在磁场中运动时间越长,其轨迹线所对应的圆心角越大C.在磁场中运动时间相同的电子,其轨迹线不一定重合D.电子的速率不同,它们在磁场中运动时间一定不相同【答案】BC【解析】由周期公式T=eq\f(2πm,qB)知,周期与电子的速率无关,所以在磁场中的运动周期相同,由t=eq\f(θ,2π)T知,电子在磁场中运动时间与轨迹对应的圆心角成正比,所以电子在磁场中运动的时间越长,其轨迹线所对应的圆心角θ越大,电子飞入匀强磁场中做匀速圆周运动,由半径公式r=eq\f(mv,qB)知,轨迹半径与速率成正比,则电子的速率越大,在磁场中的运动轨迹半径越大,故A错误,B正确;若它们在磁场中运动时间相同,但轨迹不一定重合,比如:轨迹3、4与5,它们的运动时间相同,但它们的轨迹对应的半径不同,即它们的速率不同,故C正确,D错误.故选BC.如图所示,在MN上方存在匀强磁场,带同种电荷的粒子a、b以相同的动能同时从O点射入匀强磁场中,两粒子的入射方向与磁场边界MN的夹角分别为30°和60°,且同时到达P点,已知OP=d,则()A.a、b两粒子运动半径之比为1∶eq\r(2)B.a、b两粒子的初速率之比为5∶2eq\r(3)C.a、b两粒子的质量之比为4∶75D.a、b两粒子的电荷量之比为2∶15【答案】CD【解析】设a的轨迹半径为Ra,sin30°=eq\f(\f(d,2),Ra),解得Ra=d,设b的轨迹半径为Rb,sin60°=eq\f(\f(d,2),Rb),解得Rb=eq\f(\r(3),3)d,a、b两粒子运动半径之比为eq\r(3)∶1,A错误;带电粒子在磁场中的运动时间t=eq\f(θ,2π)T=eq\f(θm,qB),时间相同,a、b两粒子的eq\f(m,q)之比为120°∶300°=2∶5,再由R=eq\f(mv,qB)得:v=eq\f(qBR,m),a、b两粒子的初速率之比为5eq\r(3)∶2,B错误;由动能Ek=eq\f(1,2)mv2,得m=eq\f(2Ek,v2),a、b两粒子的质量之比为4∶75,C正确;根据eq\f(m,q)之比为eq\f(2,5)和eq\f(ma,mb)=eq\f(4,75),联立解得eq\f(qa,qb)=eq\f(2,15),D正确.如图所示,虚线所围区域内有方向垂直纸面向里的匀强磁场,磁感应强度为B.一束电子沿圆形区域的直径方向以速度v射入磁场,电子束经过磁场区后,其运动的方向与原入射方向成θ角.设电子质量为m,电荷量为e,不计电子之间的相互作用力及所受的重力.求:(1)电子在磁场中运动轨迹的半径R;(2)电子在磁场中运动的时间t;(3)圆形磁场区域的半径r.【答案】(1)eq\f(mv,eB)(2)eq\f(mθ,eB)(3)eq\f(mv,eB)taneq\f(θ,2)【解析】(1)电子在磁场中受到的洛伦兹力提供电子做匀速圆周运动的向心力即:evB=meq\f(v2,R)由此可得电子做圆周运动的半径R=eq\f(mv,eB)(2)如图根据几何关系,可以知道电子

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论