吉林省靖宇县2023-2024学年数学高二上期末调研试题含解析_第1页
吉林省靖宇县2023-2024学年数学高二上期末调研试题含解析_第2页
吉林省靖宇县2023-2024学年数学高二上期末调研试题含解析_第3页
吉林省靖宇县2023-2024学年数学高二上期末调研试题含解析_第4页
吉林省靖宇县2023-2024学年数学高二上期末调研试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

吉林省靖宇县2023-2024学年数学高二上期末调研试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设,随机变量X的分布列如下表所示,随机变量Y满足,则当a在上增大时,关于的表述下列正确的是()X013PabA增大 B.减小C.先增大后减小 D.先减小后增大2.设是公比为的等比数列,则“”是“为递增数列”的A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件3.计算复数:()A. B.C. D.4.函数的定义域为,其导函数的图像如图所示,则函数极值点的个数为()A.2 B.3C.4 D.55.在各项都为正数的等比数列中,首项,前3项和为21,则()A.84 B.72C.33 D.1896.已知函数,其导函数的图象如图所示,则()A.在上为减函数 B.在处取极小值C.在上为减函数 D.在处取极大值7.与直线关于轴对称的直线的方程为()A. B.C. D.8.设集合,则AB=()A.{2} B.{2,3}C.{3,4} D.{2,3,4}9.已知函数,若函数有3个零点,则实数的取值范围是()A. B.C. D.10.如图,过抛物线的焦点的直线交抛物线于点、,交其准线于点,若,且,则的值为()A. B.C. D.11.已知,若与的展开式中的常数项相等,则()A.1 B.3C.6 D.912.下列命题中正确的是()A.抛物线的焦点坐标为B.抛物线的准线方程为x=−1C.抛物线的图象关于x轴对称D.抛物线的图象关于y轴对称二、填空题:本题共4小题,每小题5分,共20分。13.已知抛物线的焦点为F,若抛物线上一点P到x轴的距离为2,则|PF|的值为___________.14.若双曲线的离心率为2,则此双曲线的渐近线方程___________.15.在报名的3名男教师和3名女教师中,选取3人参加义务献血,要求男、女教师都有,则不同的选取方法数为__________.(结果用数值表示)16.以点为圆心,且与直线相切的圆的方程是__________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知椭圆的右焦点为,短轴长为4,设,的左右有两个焦点求椭圆C的方程;若P是该椭圆上的一个动点,求的取值范围;是否存在过点的直线l与椭圆交于不同的两点C,D,使得?若存在,求出直线l的方程;若不存在,请说明两点18.(12分)已知函数(1)讨论函数的单调性;(2)若对任意的,都有成立,求的取值范围19.(12分)(1)证明:;(2)已知:,,且,求证:.20.(12分)某地区2021年清明节前后3天每天下雨的概率为50%,通过模拟实验的方法来计算该地区这3天中恰好有2天下雨的概率.用随机数x(,且)表示是否下雨:当时表示该地区下雨,当时,表示该地区不下雨,从随机数表中随机取得20组数如下:332714740945593468491272073445992772951431169332435027898719(1)求出m的值,并根据上述数表求出该地区清明节前后3天中恰好有2天下雨的概率;(2)从2012年到2020年该地区清明节当天降雨量(单位:)如表:(其中降雨量为0表示没有下雨).时间2012年2013年2014年2015年2016年2017年2018年2019年2020年年份t123456789降雨量y292826272523242221经研究表明:从2012年至2021年,该地区清明节有降雨的年份的降雨量y与年份t成线性回归,求回归直线方程,并计算如果该地区2021年()清明节有降雨的话,降雨量为多少?(精确到0.01)参考公式:,参考数据:,,,21.(12分)某班主任对全班名学生进行了作业量多少与手机网游的调查,数据如下表:认为作业多认为作业不多总数喜欢手机网游不喜欢手机网游总数(1)若随机地抽问这个班的一名学生,分别求事件“认为作业不多”和事件“喜欢手机网游且认为作业多”的概率;(2)若在“认为作业多”的学生中已经用分层抽样的方法选取了名学生.现要从这名学生中任取名学生了解情况,求其中恰有名“不喜欢手机网游”的学生的概率22.(10分)2021年国庆期间,某电器商场为了促销,给出了两种优惠方案,顾客只能选择其中的一种,方案一:每消费满8千元,可减8百元.方案二:消费金额超过8千元(含8千元),可抽取小球三次,其规则是依次从装有2个红色小球、2个黄色小球的一号箱子,装有2个红色小球、2个黄色小球的二号箱子,装有1个红色小球、3个黄色小球的三号箱子各抽一个小球(这些小球除颜色外完全相同),其优惠情况为:若抽出3个红色小球则打6折;若抽出2个红色小球则打7折;若抽出1个红色小球则打8折;若没有抽出红色小球则不打折.(1)若有两名顾客恰好消费8千元,他们都选中第二方案,求至少有一名顾客比选择方案一更优惠的概率;(2)若你朋友在该商场消费了1万元,请用所学知识帮助你朋友分析一下应选择哪种付款方案.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】先求得参数b,再去依次去求、、,即可判断出的单调性.【详解】由得则,由得a在上增大时,增大.故选:A2、D【解析】当时,不是递增数列;当且时,是递增数列,但是不成立,所以选D.考点:等比数列3、D【解析】直接利用复数代数形式的乘除运算化简可得结论.【详解】故选:D.4、C【解析】根据给定的导函数的图象,结合函数的极值的定义,即可求解.【详解】如图所示,设导函数的图象与轴的交点分别为,根据函数的极值的定义可知在该点处的左右两侧的导数符号相反,可得为函数的极大值点,为函数的极小值点,所以函数极值点的个数为4个.故选:C.5、A【解析】分析:设等比数列的公比为,根据前三项的和为列方程,结合等比数列中,各项都为正数,解得,从而可以求出的值.详解:设等比数列的公比为,首项为3,前三项的和为,,解之得或,在等比数列中,各项都为正数,公比为正数,舍去),,故选A.点睛:本题考查以一个特殊的等比数列为载体,通过求连续三项和的问题,着重考查了等比数列的通项,等比数列的性质和前项和等知识点,属于简单题.6、C【解析】首先利用导函数的图像求和的解,进而得到函数的单调区间和极值点.【详解】由导函数的图象可知:当时,或;当时,或,所以的单调递增区间为和,单调递减区间为和,故在处取得极大值,在处取得极小值,在处取得极大值.故选:C.7、D【解析】点关于x轴对称,横坐标不变,纵坐标互为相反数,据此即可求解.【详解】设(x,y)是与直线关于轴对称的直线上任意一点,则(x,-y)在上,故,∴与直线关于轴对称的直线的方程为.故选:D.8、B【解析】按交集定义求解即可.【详解】AB={2,3}故选:B9、B【解析】构造,通过求导,研究函数的单调性及极值,最值,画出函数图象,数形结合求出实数的取值范围.【详解】令,即,令,当时,,,令得:或,结合,所以,令得:,结合得:,所以在处取得极大值,也是最大值,,当时,,且,当时,,则恒成立,单调递增,且当时,,当时,,画出的图象,如下图:要想有3个零点,则故选:B10、B【解析】分别过点、作准线的垂线,垂足分别为点、,设,根据抛物线的定义以及直角三角形的性质可求得,结合已知条件求得,分析出为的中点,进而可得出,即可得解.【详解】如图,分别过点、作准线的垂线,垂足分别为点、,设,则由己知得,由抛物线的定义得,故,在直角三角形中,,,因为,则,从而得,所以,,则为的中点,从而.故选:B.11、B【解析】根据二项展开式的通项公式即可求出【详解】的展开式中的常数项为,而的展开式中的常数项为,所以,又,所以故选:B12、C【解析】根据抛物线的性质逐项分析可得答案.【详解】抛物线的焦点坐标为,故A错误;抛物线的准线方程为,故B错误;抛物线的图象关于x轴对称,故C正确,D错误;故选:C.二、填空题:本题共4小题,每小题5分,共20分。13、3【解析】先求出抛物线的焦点坐标和准线方程,再利用抛物线的定义可求得答案【详解】抛物线的焦点为,准线为,因为抛物线上一点P到x轴的距离为2,所以由抛物线的定义可得,故答案为:314、【解析】根据离心率得出,结合得出关系,即可求出双曲线的渐近线方程.【详解】解:由题可知,离心率,即,又,即,则,故此双曲线的渐近线方程为.故答案为:.15、18【解析】由题设,选取方式有两男教师一女教师或两女教师一男教师,应用组合数求出选取方法数.【详解】选取方式有:选两男教师一女教师或选两女教师一男教师,∴不同的选取方法有:种.故答案为:18.16、;【解析】根据相切可得圆心到直线距离即为圆的半径,利用点到直线距离公式解出半径,即可得到圆的方程【详解】由题,设圆心到直线的距离为,所以,因为圆与直线相切,则,所以圆的方程为,故答案为:【点睛】本题考查利用直线与圆的位置关系求圆的方程,考查点到直线距离公式的应用三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)(3)满足条件的直线不存在,详见解析【解析】根据条件直接求出,进而求出椭圆标准方程;设,表示出,求出其范围;设CD的中点为;由,则;得到其斜率的乘积为,最后列取方程联立计算即可.【详解】解:由题意可知,,则;所以椭圆C的方程为:;由题意可知,,设,则,;所以的取值范围是;假设存在满足条件的直线,根据题意得直线的斜率存在;则设直线的方程为:;消化简得:;,则;;设,则CD的中点为;,;,则;,即;即,无解;故满足条件的直线不存在.【点睛】本题考查椭圆的简单几何性质,向量的数量积,直线的垂直,设而不求的思想方法,关键在于将几何条件进行适当的转化,还考查了学生的综合运算能力,属于中档题.18、(1)答案见解析;(2).【解析】(1)求,分别讨论不同范围下的正负,分别求单调性;(2)由(1)所求的单调性,结合,分别求出的范围再求并集即可.【详解】解:(1)由已知定义域为,当,即时,恒成立,则在上单调递增;当,即时,(舍)或,所以在上单调递减,在上单调递增.所以时,在上单调递增;时,在上单调递减,在上单调递增.(2)由(1)可知,当时,在上单调递增,若对任意的恒成立,只需,而恒成立,所以成立;当时,若,即,则在上单调递增,又,所以成立;若,则在上单调递减,在上单调递增,又,所以,,不满足对任意的恒成立.所以综上所述:.19、(1)证明见解析;(2)证明见解析.【解析】(1)利用分析法证明即可;(2)将与相乘,展开后利用基本不等式可证明所证不等式成立.【详解】(1)要证成立,即证,即证,即证,而显然成立,故成立;(2)已知,,且,则,当且仅当时,等号成立,故.20、(1),;(2);该地区2020年清明节有降雨的话,降雨量为20.2mm【解析】(1)利用概率模拟求概率;(2)套用公式求回归直线方程即可.【详解】解:(1)由题意可知,,解得,即表示下雨,表示不下雨,所给的20组数据中714,740,491,272,073,445,435,027,共8组表示3天中恰有两天下雨,故所求的概率为;(2)由题中所给的数据可得,,所以,,所以回归方程为,当时,,所以该地区2020年清明节有降雨的话,降雨量为20.2mm【点睛】求线性回归方程的步骤:①求出;②套公式求出;③写出回归方程;④利用回归方程进行预报;21、(1)事件“认为作业不多”和事件“喜欢手机网游且认为作业多”的概率分别为、;(2).【解析】(1)利用古典概型的概率公式可求得所求事件的概率;(2)确定所选的名学生中,“不喜欢手机网游”和“喜欢手机网游”的学生人数,加以标记,列举出所有的基本事件,确定所求事件所包含的基本事件,利用古典概型的概率公式可求得所求事件的概率.【小问1详解】解:由题意可知,全班名学生中,“认为作业不多”的学生人数为人,“喜欢手机网游且认为作业多”的学生人数为人,因此,随机地抽问这个班的一名学生,事件“认为作业不多”的概率为,事件“喜欢手机网游且认为作业多”的概率为.【小问2详解】解:在“认为作业多”的学生中已经用分层抽样的方法选取了名学生,这名学生中“不喜欢手机网游”的学生人数为,记为,名学生中“喜欢手机网游”的学生人数为,分别记为、、、,从这名学生中任取名学生,所有的基本事件有:、、、、、、、、、,共种,其中,事件“恰有名“不喜欢手机网游”的学生”包含的基本事件有:、、、,共种,故所求概率为.22、(1)(2)选择方案二更划算【解析】(1)要使方案二比方案一优惠,则需要抽出至少一个红球,求出没有抽出红色小球

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论