2024届重庆市江津中学高二数学第一学期期末联考试题含解析_第1页
2024届重庆市江津中学高二数学第一学期期末联考试题含解析_第2页
2024届重庆市江津中学高二数学第一学期期末联考试题含解析_第3页
2024届重庆市江津中学高二数学第一学期期末联考试题含解析_第4页
2024届重庆市江津中学高二数学第一学期期末联考试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届重庆市江津中学高二数学第一学期期末联考试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.,则与分别为()A.与 B.与C.与0 D.0与2.已知圆锥的表面积为,且它的侧面展开图是一个半圆,则这个圆锥的体积为()A. B.C. D.3.在等比数列中,,,则等于()A. B.5C. D.94.函数的图象大致是()A. B.C. D.5.现有甲、乙、丙、丁、戊五位同学,分别带着A、B、C、D、E五个不同的礼物参加“抽盲盒”学游戏,先将五个礼物分别放入五个相同的盒子里,每位同学再分别随机抽取一个盒子,恰有一位同学拿到自己礼物的概率为()A. B.C. D.6.已知,则“”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件7.若数列满足,则()A.2 B.6C.12 D.208.已知椭圆与双曲线有相同的焦点,且它们的离心率之积为1,则椭圆的标准方程为()A. B.C. D.9.函数在处有极小值5,则()A. B.C.或 D.或310.已知直线,,若,则实数等于()A.0 B.1C. D.1或11.已知复数满足(其中为虚数单位),则复数的虚部为()A. B.C. D.12.在空间直角坐标系中,已知点M是点在坐标平面内的射影,则的坐标是()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知直线,,为抛物线上一点,则到这两条直线距离之和的最小值为___________.14.设,分别是椭圆C:左、右焦点,点M为椭圆C上一点且在第一象限,若为等腰三角形,则M的坐标为___________15.某校组织了一场演讲比赛,五位评委对某位参赛选手的评分分别为9,x,8,y,9.已知这组数据的平均数为8.6,方差为0.24,则______16.命题“”的否定为_____________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)设a,b是实数,若椭圆过点,且离心率为.(1)求椭圆E的标准方程;(2)过椭圆E的上顶点P分别作斜率为,的两条直线与椭圆交于C,D两点,且,试探究过C,D两点的直线是否过定点?若过定点,求出定点坐标;否则,说明理由.18.(12分)如图,在直三棱柱中,,E、F分别是、的中点(1)求证:平面;(2)求证:平面19.(12分)已知O为坐标原点,、为椭圆C的左、右焦点,,P为椭圆C的上顶点,以P为圆心且过、的圆与直线相切(1)求椭圆C的标准方程;(2)若过点作直线l,交椭圆C于M,N两点(l与x轴不重合),在x轴上是否存在一点T,使得直线TM与TN的斜率之积为定值?若存在,请求出所有满足条件的点T的坐标;若不存在,请说明理由20.(12分)如图,在直三棱柱中,,,,为的中点,点,分别在棱,上,,.(1)求点到直线的距离(2)求平面与平面夹角的余弦值.21.(12分)p:方程有两个不等的负实数根;q:方程无实数根,若为真命题,为假命题,求实数m的取值范围、22.(10分)如图,在三棱柱中,平面,,.(1)求证:平面;(2)点M在线段上,且,试问在线段上是否存在一点N,满足平面,若存在求的值,若不存在,请说明理由?

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】利用正弦函数和常数导数公式,结合代入法进行求解即可.【详解】因为,所以,所以,,故选:C2、D【解析】设圆锥的半径为,母线长,根据已知条件求出、的值,可求得该圆锥的高,利用锥体的体积公式可求得结果.【详解】设圆锥的半径为,母线长,因为侧面展开图是一个半圆,则,即,又圆锥的表面积为,则,解得,,则圆锥的高,所以圆锥的体积,故选:D.3、D【解析】由等比数列的项求公比,进而求即可.【详解】由题设,,∴故选:D4、A【解析】根据函数的定义域及零点的情况即可得到答案.【详解】函数的定义域为,则排除选项、,当时,,则在上单调递减,且,,由零点存在定理可知在上存在一个零点,则排除,故选:.5、D【解析】利用排列组合知识求出每位同学再分别随机抽取一个盒子,恰有一位同学拿到自己礼物的情况个数,以及五人抽取五个礼物的总情况,两者相除即可.【详解】先从五人中抽取一人,恰好拿到自己礼物,有种情况,接下来的四人分为两种情况,一种是两两一对,两个人都拿到对方的礼物,有种情况,另一种是四个人都拿到另外一个人的礼物,不是两两一对,都拿到对方的情况,由种情况,综上:共有种情况,而五人抽五个礼物总数为种情况,故恰有一位同学拿到自己礼物的概率为.故选:D6、A【解析】由,结合基本不等式可得,由此可得,由此说明“”是“”的充分条件,再通过举反例说明“”不是“”的必要条件,由此确定正确选项.【详解】∵,∴(当且仅当时等号成立),(当且仅当时等号成立),∴(当且仅当时等号成立),若,则,∴,所以“”是“”的充分条件,当时,,此时,∴“”不是“”的必要条件,∴“”是“”的充分不必要条件,故选:A.7、D【解析】由已知条件变形可得,然后累乘法可得,即可求出详解】由得,,.故选:D8、A【解析】计算双曲线的焦点为,离心率,得到椭圆的焦点为,离心率,计算得到答案.【详解】双曲线的焦点为,离心率,故椭圆的焦点为,离心率,即.解得,故椭圆标准方程为:.故选:.【点睛】本题考查了椭圆和双曲线的离心率,焦点,椭圆的标准方程,意在考查学生的计算能力.9、A【解析】由题意条件和,可建立一个关于的方程组,解出的值,然后再将带入到中去验证其是否满足在处有极小值,排除增根,即可得到答案.【详解】由题意可得,则,解得,或.当,时,.由,得;由,得.则在上单调递增,在上单调递减,故在处有极大值5,不符合题意.当,时,.由,得;由,得.则在上单调递减,在上单调递增,故在处有极小值5,符合题意,从而故选:A.10、C【解析】由题意可得,则由得,从而可求出的值【详解】由题意可得,因为,,,所以,解得,故选:C11、A【解析】由题目条件可得,即,然后利用复数的运算法则化简.【详解】因为,所以,则故复数的虚部为.故选:A.【点睛】本题考查复数的相关概念及复数的乘除运算,按照复数的运算法则化简计算即可,较简单.12、C【解析】点在平面内的射影是坐标不变,坐标为0的点.【详解】点在坐标平面内的射影为,故点M的坐标是故选:C二、填空题:本题共4小题,每小题5分,共20分。13、【解析】过作,垂足分别为,由直线为抛物线的准线,转化,当三点共线时,取得最小值【详解】过作,垂足分别为抛物线的焦点为直线为抛物线的准线由抛物线的定义,故,当三点共线时,取得最小值故最小值为点到直线的距离:故答案为:14、【解析】先计算出,所以,利用余弦定理求出,即可求出,即得到M的横坐标为,代入椭圆C:求出.【详解】椭圆C:,所以.因为M在椭圆上,.因为M在第一象限,故.为等腰三角形,则,所以,由余弦定理可得.过M作MA⊥x轴于A,则所以,即M的横坐标为.因为M为椭圆C:上一点且在第一象限,所以,解得:所以M的坐标为.故答案为:15、1【解析】根据平均数和方差的计算公式,求得,则问题得解.【详解】由题可知:整理得:;,整理得:,联立方程组得,解得或,对应或,故.故答案为:1.16、【解析】根据特称命题的否定是全称命题,可得结果.【详解】由特称命题否定是全称命题,故条件不变,否定结论所以“”的否定为“”故答案为:【点睛】本题主要考查特称命题的否定是全称命题,属基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)过定点,坐标为.【解析】(1)根据椭圆的离心率公式,结合代入法进行求解即可;(2)根据直线斜率公式和一元二次方程根与系数的关系进行求解即可.【小问1详解】因为椭圆离心率为,所以有.椭圆过点,所以,由可解:,所以该椭圆方程为:;【小问2详解】由(1)可知:,设直线的方程为:,若,由椭圆的对称性可知:,不符合题意,当时,直线的方程与椭圆方程联立得:,设,,,因为,所以,把代入得:,所以有或,解得:或,当时,直线,直线恒过定点,此时与点重合,不符合题意,当时,,直线恒过点,当直线不存在斜率时,此时,,因为,所以,两点不在椭圆上,不符合题意,综上所述:过C,D两点的直线过定点,定点坐标为.【点睛】关键点睛:根据一元二次方程根与系数关系是解题的关键.18、(1)证明见解析;(2)证明见解析.【解析】(1)连接,交于点M,连接ME,则M为中点.根据三角形的中位线定理和平行四边形的判断和性质可证得,再由线面平行的判定定理可得证;(2)由线面垂直的性质和判定可得证.【详解】证明:(1)连接,交于点M,连接ME,则M为中点因为E、F分别是与的中点,所以,则,从而为平行四边形,则又因为平面平面,所以平面(2)由平面,因为平面,所以而,M为的中点,所以因为,所以平面,由(1)有,故平面19、(1);(2)存在;.【解析】(1)根据给定条件求出a,c,b即可作答.(2)联立直线l与椭圆C的方程,利用斜率坐标公式并结合韦达定理计算即可推理作答.【小问1详解】依题意,,,,由椭圆定义知:椭圆长轴长,即,而半焦距,即有短半轴长,所以椭圆C的标准方程为:【小问2详解】依题意,设直线l方程为,由消去x并整理得,设,,则,,假定存在点,直线TM与TN的斜率分别为,,,要使为定值,必有,即,当时,,,当时,,,所以存在点,使得直线TM与TN的斜率之积为定值【点睛】方法点睛:求定值问题常见的方法有两种:(1)从特殊入手,求出定值,再证明这个值与变量无关(2)直接推理、计算,并在计算推理的过程中消去变量,从而得到定值20、(1);(2).【解析】(1)由直棱柱的性质及勾股定理求出△各边长,应用余弦定理求,进而可得其正弦值,再求边上的高即可.(2)以为原点,,,所在直线为x轴、y轴、z轴,建立空间直角坐标系,然后求出两个平面的法向量,然后可算出答案.【小问1详解】如图,连接,由题设,,,,由直棱柱性质及,在中,在中,在中,在中,所以在△中,,则,所以到直线的距离.【小问2详解】以为原点,,,所在直线为x轴、y轴、z轴,建立如图所示的空间直角坐标系易知:,,,则,因为平面,所以平面的一个法向量为设平面的法向量为,则,取,则,所以,即平面与平面的夹角的余弦值为21、【解析】利用复合命题的真假推出两个命题为一真一假,求出m的范围即可.【详解】:方程有两个不等的负实数根,解得,:方程无实数根,解得,所以:,:或.因为为真命题,为假命题,所以真假,或假真.(1)当真假时,即真为真,所以,解得;(2)当假真时,即真为真,所以,解得.综上,取值范围为

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论