湖北省恩施一中、利川一中等四校2023-2024学年高二上数学期末达标检测试题含解析_第1页
湖北省恩施一中、利川一中等四校2023-2024学年高二上数学期末达标检测试题含解析_第2页
湖北省恩施一中、利川一中等四校2023-2024学年高二上数学期末达标检测试题含解析_第3页
湖北省恩施一中、利川一中等四校2023-2024学年高二上数学期末达标检测试题含解析_第4页
湖北省恩施一中、利川一中等四校2023-2024学年高二上数学期末达标检测试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

湖北省恩施一中、利川一中等四校2023-2024学年高二上数学期末达标检测试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设异面直线、的方向向量分别为,,则异面直线与所成角的大小为()A. B.C. D.2.已知函数,那么“”是“在上为增函数”的A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件3.从0,1,2,3,4,5这六个数字中,任取两个不同数字构成平面直角坐标系内点的横、纵坐标,其中不在轴上的点有()A.36个 B.30个C.25个 D.20个4.已知,则“”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件5.已知、,则直线的倾斜角为()A. B.C. D.6.已知则是的A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件7.已知函数,若存在唯一的零点,且,则的取值范围是A. B.C. D.8.在正方体中中,,若点P在侧面(不含边界)内运动,,且点P到底面的距离为3,则异面直线与所成角的余弦值是()A. B.C. D.9.已知椭圆:的左、右焦点为,,上顶点为P,则()A.为锐角三角形 B.为钝角三角形C.为直角三角形 D.,,三点构不成三角形10.已知数列{}满足,且,若,则=()A.-8 B.-11C.8 D.1111.如图,已知最底层正方体的棱长为a,上层正方体下底面的四个顶点是下层正方体上底面各边的中点,依此方法一直继续下去,则所有这些正方体的体积之和将趋近于()A. B.C. D.12.如图,直四棱柱的底面是菱形,,,M是的中点,则异面直线与所成角的余弦值为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.数列满足前项和,则数列的通项公式为_____________14.某甲、乙两人练习跳绳,每人练习10组,每组不间断跳绳计数的茎叶图如图,则下面结论中所有正确的序号是___________.①甲比乙的极差大;②乙的中位数是18;③甲的平均数比乙的大;④乙的众数是21.15.攒尖是古代中国建筑中屋顶的一种结构形式,依其平面有圆形攒尖、三角攒尖、四角攒尖、八角攒尖.如图属重檐四角攒尖,它的上层轮廓可近似看作一个正四棱锥,若此正四棱锥的侧面积是底面积的2倍,则侧面与底面的夹角为___________16.定义离心率是的椭圆为“黄金椭圆”.已知椭圆是“黄金椭圆”,则_________.若“黄金椭圆”两个焦点分别为、,P为椭圆C上的异于顶点的任意一点,点M是的内心,连接并延长交于点N,则________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知抛物线C:,经过的直线与抛物线C交于A,B两点(1)求的值(其中为坐标原点);(2)设F为抛物线C的焦点,直线为抛物线C的准线,直线是抛物线C的通径所在的直线,过C上一点P()()作直线与抛物线相切,若直线与直线相交于点M,与直线相交于点N,证明:点P在抛物线C上移动时,恒为定值,并求出此定值18.(12分)已知数列是公差不为0的等差数列,数列是公比为2的等比数列,是,的等比中项,,.(1)求数列,的通项公式;(2)求数列的前项和.19.(12分)如图,OP为圆锥的高,AB为底面圆O的直径,C为圆O上一点,并且,E为劣弧上的一点,且,.(1)若E为劣弧的中点,求证:平面POE;(2)若E为劣弧的三等分点(靠近点),求平面PEO与平面PEB的夹角的余弦值.20.(12分)已知函数,.(1)当时,求曲线在点处的切线方程;(2)若在区间上有唯一的零点.(ⅰ)求的取值范围;(ⅱ)证明:.21.(12分)某种机械设备随着使用年限的增加,它的使用功能逐渐减退,使用价值逐年减少,通常把它使用价值逐年减少的“量”换算成费用,称之为“失效费”.某种机械设备的使用年限(单位:年)与失效费(单位:万元)的统计数据如下表所示:使用年限(单位:年)1234567失效费(单位:万元)2.903.303.604.404.805.205.90(1)由上表数据可知,可用线性回归模型拟合与的关系.请用相关系数加以说明;(精确到0.01)(2)求出关于的线性回归方程,并估算该种机械设备使用8年的失效费参考公式:相关系数线性回归方程中斜率和截距最小二乘估计计算公式:,参考数据:,,22.(10分)已知抛物线C:,直线l经过点,且与抛物线C交于M,N两点,其中.(1)若,且,求点M的坐标;(2)是否存在正数m,使得以MN为直径的圆经过坐标原点O,若存在,请求出正数m,若不存在,请说明理由.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】利用空间向量夹角的公式直接求解.【详解】,,,.由异面直线所成角的范围为,故异面直线与所成的角为.故选:C2、A【解析】对函数进行求导得,进而得时,,在上为增函数,然后判断充分性和必要性即可.【详解】解:因为的定义域是,所以,当时,,在上为增函数.所以在上为增函数,是充分条件;反之,在上为增函数或,不是必要条件.故选:A.【点睛】本题主要考查充分条件和必要条件的判断,属于中档题.3、C【解析】根据点不在y轴上,分2类根据分类加法计数原理求解.【详解】因为点不在轴上,所以点的横坐标不能为0,分两类考虑,第一类含0且为点的纵坐标,共有个点,第二类坐标不含0的点,共有个点,根据分类加法计数原理可得共有个点.故选:C4、A【解析】由,结合基本不等式可得,由此可得,由此说明“”是“”的充分条件,再通过举反例说明“”不是“”的必要条件,由此确定正确选项.【详解】∵,∴(当且仅当时等号成立),(当且仅当时等号成立),∴(当且仅当时等号成立),若,则,∴,所以“”是“”的充分条件,当时,,此时,∴“”不是“”的必要条件,∴“”是“”的充分不必要条件,故选:A.5、B【解析】设直线的倾斜角为,利用直线的斜率公式求出直线的斜率,进而可得出直线的倾斜角.【详解】设直线的倾斜角为,由斜率公式可得,,因此,.故选:B.6、A【解析】先解不等式,再比较集合包含关系确定选项.【详解】因为,所以是的充分不必要条件,选A.【点睛】本题考查解含绝对值不等式、解一元二次不等式以及充要关系判定,考查基本分析求解能力,属基础题.7、C【解析】当时,,函数有两个零点和,不满足题意,舍去;当时,,令,得或.时,;时,;时,,且,此时在必有零点,故不满足题意,舍去;当时,时,;时,;时,,且,要使得存在唯一的零点,且,只需,即,则,选C考点:1、函数的零点;2、利用导数求函数的极值;3、利用导数判断函数的单调性8、A【解析】如图建立空间直角坐标系,先由,且点P到底面的距离为3,确定点P的位置,然后利用空间向量求解即可【详解】如图,以为坐标原点,以所在的直线分别为轴,建立空间直角坐标系,则,所以,所以,所以,因为,所以平面,因为平面平面,点P在侧面(不含边界)内运动,,所以,因为点P到底面的距离为3,所以,所以,因为,所以异面直线与所成角的余弦值为,故选:A9、A【解析】根据题意求得,要判断的形状,只需要看是什么角即可,利用余弦定理判断,从而可得结论.【详解】解:由椭圆:,得,则,则,所以且为锐角,因为,所以锐角,所以为锐角三角形.故选:A.10、C【解析】利用递推关系,结合取值,求得即可.【详解】因为,且,,故可得,解得(舍),;同理求得,,.故选:C.11、D【解析】由已知可判断出所有这些正方体的体积构成首项为,公比为的等比数列,然后求和可得答案.【详解】最底层上面第一个正方体的棱长为,其体积为,上面第二个正方体的棱长为,其体积为,上面第三个正方体的棱长为,其体积为,所有这些正方体的体积构成首项为,公比为的等比数列,其前项和为,当,,所以所有这些正方体的体积之和将趋近于.故选:D.12、D【解析】用向量分别表示,利用向量的夹角公式即可求解.【详解】由题意可得,故选:D【点睛】本题主要考查用向量的夹角公式求异面直线所成的角,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】由已知中前项和,结合,分别讨论时与时的通项公式,并由时,的值不满足时的通项公式,故要将数列的通项公式写成分段函数的形式【详解】∵数列前项和,∴当时,,又∵当时,,故,故答案为.【点睛】本题考查的知识点是等差数列的通项公式,其中正确理解由数列的前n项和Sn,求通项公式的方法和步骤是解答本题的关键14、①③④【解析】根据茎叶图提供的数据求出相应的极差、中位数、均值、众数再判断【详解】由茎叶图,甲的极差是37-8=29,乙的极差是23-9=14,甲极差大,①正确;乙中位数是,②错;甲平均数是:,乙的平均数为:16.9,③正确;乙的众数是21,④正确故答案为:①③④15、【解析】设此四棱锥P-ABCD底面边长为,斜高为,连结AC、BD交于点O,连结OP.则以O为原点,为x、y、z轴正半轴建立空间直角坐标系,用向量法求出侧面与底面夹角.【详解】设此四棱锥P-ABCD底面边长为,斜高为,连结AC、BD交于点O,连结OP.则,,以O为原点,为x、y、z轴正半轴建立空间直角坐标系则,,设平面的法向量为,则,令,则,显然平面的法向量为所以,所以侧面与底面的夹角为故答案为:.16、①.②.【解析】第一空,直接套入“黄金椭圆”新定义即可,第二空,从内切圆入手,找到等量关系,进而得到,求解即可【详解】由题,,所以如图,连接,设内切圆半径为,则,即,∴,∴,∴∴,∴故答案为:;【点睛】本题从新定义出发,第一空直接套用定义可得答案,第二空升华,需要在理解新定义的基础上,借助内切圆的相关公式求解,层层递进,是一道好题.关键点在于找到“”这一关系三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)证明见解析,定值为【解析】(1)设出直线的方程并与抛物线方程联立,结合根与系数关系求得.(2)求得过点的抛物线的切线方程,由此求得两点的坐标,通过化简来证得为定值,并求得定值.【小问1详解】依题意可知直线的斜率不为零,设直线的方程为,设,,消去并化简得,所以,所以.小问2详解】抛物线方程为,焦点坐标为,准线,通径所在直线,在抛物线上,且,所以过点的抛物线的切线的斜率存在且不为零,设过点的切线方程为,由消去并化简得,,将代入上式并化简得,解得,所以切线方程为,令得,令得,,将代入上式并化简得,所以为定值,且定值为.18、(1)(2)【解析】(1)根据是,的等比中项,且,,由求解;(2)由(1)得到,再利用错位相减法求解.【小问1详解】解:因为是,的等比中项,且,,所以,解得,,所以;【小问2详解】由(1)得,所以,则,两式相减得,,,所以.19、(1)证明见解析(2)【解析】(1)推导出平面,,,由此能证明平面(2)推导出,,以为原点,为轴,为轴,为轴,建立空间直角坐标系,利用向量法能求出二面角的余弦值【小问1详解】证明:为圆锥的高,平面,又平面,,为劣弧的中点,,,平面,平面【小问2详解】解:解:为劣弧的三等分点(靠近点,为底面圆的直径,为圆上一点,并且,,以为原点,为轴,为轴,为轴,建立空间直角坐标系,,0,,,0,,,,,,0,,,3,,0,,,,,,,,,3,设平面的法向量,,,则,取,得,,,设平面的法向量,,,则,取,得,1,,设二面角的平面角为,则,二面角的余弦值为20、(1);(2)(ⅰ);(ⅱ)证明见解析.【解析】(1)求出,,利用导数的几何意义即可求得切线方程;(2)(ⅰ)根据题意对参数分类讨论,当时,等价转化,且构造函数,利用零点存在定理,即可求得参数的取值范围;(ⅱ)根据(ⅰ)中所求得到与的等量关系,求得并构造函数,利用导数研究其单调性和最值,则问题得证.【小问1详解】当时,,则,故,,则曲线在点处的切线方程为.【小问2详解】(ⅰ)因为,故可得,因为,则当时,,则,无零点,不满足题意;当时,若在有一个零点,即在有一个零点,也即在有一个零点,又,则单调递增,则只需,解得.综上所述,若在区间上有唯一的零点,则;(ⅱ)由(ⅰ)可知,若在区间上有唯一的零点,则,也即,则,令,则,又在都是单调增函数,故是单调增函数,又,故,则在单调递增,则,故,即证.【点睛】本题考查导数的几何意义,利用导数研究函数的零点以及最值;处理问题的关键是合理转化函数零点问题,以及充分利用零点存在定理,熟练掌握构造函数法,属综合困难题.21、(1)答案见解析;(2);失效费为6.3万元【解析】(1)根据相关系数公式计算出相关系数可得结果;(2)根据公式求出和可得关于的线性回归方程,再代入可求出结果.【详解】(1)由题意,知,,∴结合参考数据知:因为与的相关系数近似为0.99,所以与的线性相关程度相当大,从而可以用线性回归模型拟合与的关系(2

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论