版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
河南省唐河县友兰实验高中2023年高二数学第一学期期末综合测试试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.如果椭圆的弦被点平分,那么这条弦所在的直线的方程是()A. B.C. D.2.【山东省潍坊市二模】已知双曲线的离心率为,其左焦点为,则双曲线的方程为()A. B.C. D.3.已知函数.若数列的前n项和为,且满足,,则的最大值为()A.9 B.12C.20 D.4.已知抛物线的焦点与椭圆的右焦点重合,则抛物线的准线方程为()A. B.C. D.5.已知a,b为正实数,且,则的最小值为()A.1 B.2C.4 D.66.下列推理中属于归纳推理且结论正确的是()A.由,求出,,,…,推断:数列的前项和B.由满足对都成立,推断:为奇函数C.由半径为的圆的面积,推断单位圆的面积D.由,,,…,推断:对一切,7.已知,若对于且都有成立,则实数的取值范围是()A. B.C. D.8.△ABC两个顶点坐标A(-4,0),B(4,0),它的周长是18,则顶点C的轨迹方程是()A. B.(y≠0)C. D.9.(2016新课标全国Ⅱ理科)已知F1,F2是双曲线E:的左,右焦点,点M在E上,MF1与轴垂直,sin,则E的离心率为A. B.C. D.210.某中学高一年级有200名学生,高二年级有260名学生,高三年级有340名学生,为了了解该校高中学生完成作业情况,现用分层抽样的方法抽取一个容量为40的样本,则高二年级抽取的人数为()A.10 B.13C.17 D.2611.已知圆C的方程为,点P在圆C上,O是坐标原点,则的最小值为()A.3 B.C. D.12.五行学说是中华民族创造的哲学思想.古代先民认为,天下万物皆由五种元素组成,分别是金、木、水、火、土,彼此之间存在如图所示的相生相克关系.若从金、木、水、火、土五种元素中任取两种,则这两种元素恰是相生关系的概率是()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知球的半径为4,圆与圆为该球的两个小圆,为圆与圆的公共弦,,若,则两圆圆心的距离___________14.如图,PD垂直于正方形ABCD所在平面,AB=2,E为PB的中点,cos〈,〉=,若以DA,DC,DP所在直线分别为x,y,z轴建立空间直角坐标系,则点E的坐标为________15.若恒成立,则______.16.数列满足,,则______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,在四棱锥P﹣ABCD中,PA⊥平面ABCD,AB⊥AD,BC//AD,AD=2BC=2PA=2AB=2,E,F,G分别为线段AD,DC,PB的中点.(1)证明:直线PF//平面ACG;(2)求直线PD与平面ACG所成角的正弦值.18.(12分)如图,直三棱柱中,,,是棱的中点,(1)求异面直线所成角的余弦值;(2)求二面角的余弦值19.(12分)已知点及圆,点P是圆B上任意一点,线段的垂直平分线l交半径于点T,当点P在圆上运动时,记点T的轨迹为曲线E(1)求曲线E的方程;(2)设存在斜率不为零且平行的两条直线,,它们与曲线E分别交于点C、D、M、N,且四边形是菱形,求该菱形周长的最大值20.(12分)已知是等差数列,是等比数列,且(1)求,的通项公式;(2)设,求数列的前项和.21.(12分)设数列的前项和,且成等差数列.(1)求数列的通项公式;(2)记数列前项和,求使成立的的最小值22.(10分)已知数列满足,(1)证明是等比数列,(2)求数列的前项和
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】设该弦所在直线与椭圆的两个交点分别为,,则,利用点差法可得答案.【详解】设该弦所在直线与椭圆的两个交点分别为,,则因为,两式相减可得,,即由中点公式可得,所以,即,所以AB所在直线方程为,即故选:B2、D【解析】分析:根据题设条件,列出方程,求出,,的值,即可求得双曲线得标准方程详解:∵双曲线的离心率为,其左焦点为∴,∴∵∴∴双曲线的标准方程为故选D.点睛:本题考查双曲线的标准方程,双曲线的简单性质的应用,根据题设条件求出,,的值是解决本题的关键.3、C【解析】先得到及递推公式,要想最大,则分两种情况,负数且最小或为正数且最大,进而求出最大值.【详解】①,当时,,当时,②,所以①-②得:,整理得:,所以,或,当是公差为2的等差数列,且时,最小,最大,此时,所以,此时;当且是公差为2的等差数列时,最大,最大,此时,所以,此时综上:的最大值为20故选:C【点睛】方法点睛:数列相关的最值求解,要结合题干条件,使用不等式放缩,函数单调性或导函数等进行求解.4、C【解析】先求出椭圆的右焦点,从而可求抛物线的准线方程.【详解】,椭圆右焦点坐标为,故抛物线的准线方程为,故选:C.【点睛】本题考查抛物线的几何性质,一般地,如果抛物线的方程为,则抛物线的焦点的坐标为,准线方程为,本题属于基础题.5、D【解析】利用基本不等式“1”的妙用求最值.【详解】因为a,b为正实数,且,所以.当且仅当,即时取等号.故选:D6、A【解析】根据归纳推理是由特殊到一般,推导结论可得结果.【详解】对于A,由,求出,,,…,推断:数列的前项和,是由特殊推导出一般性的结论,且,故A正确;B和C属于演绎推理,故不正确;对于D,属于归纳推理,但时,结论不正确,故D不正确.故选:A.7、D【解析】根据题意转化为对于且时,都有恒成立,构造函数,转化为时,恒成立,求得的导数,转化为在上恒成立,即可求解.【详解】由题意,对于且都有成立,不妨设,可得恒成立,即对于且时,都有恒成立,构造函数,可转化为,函数为单调递增函数,所以当时,恒成立,又由,所以在上恒成立,即在上恒成立,又由,所以,即实数取值范围为.故选:D8、D【解析】根据三角形的周长得出,再由椭圆的定义得顶点C的轨迹为以A,B为焦点的椭圆,去掉A,B,C共线的情况,可求得顶点C的轨迹方程.【详解】因为,所以,所以顶点C的轨迹为以A,B为焦点的椭圆,去掉A,B,C共线的情况,即,所以顶点C的轨迹方程是,故选:D.【点睛】本题考查椭圆的定义,由定义求得动点的轨迹方程,求解时,注意去掉不满足的点,属于基础题.9、A【解析】由已知可得,故选A.考点:1、双曲线及其方程;2、双曲线的离心率.【方法点晴】本题考查双曲线及其方程、双曲线的离心率.,涉及方程思想、数形结合思想和转化化归思想,考查逻辑思维能力、等价转化能力、运算求解能力,综合性较强,属于较难题型.由已知可得,利用双曲线的定义和双曲线的通径公式,可以降低计算量,提高解题速度.10、B【解析】计算出抽样比可得答案.【详解】该校高中学生共有名,所以高二年级抽取的人数名.故选:B.11、B【解析】化简判断圆心和半径,利用圆的性质判断连接线段OC,交圆于点P时最小,再计算求值即得结果.【详解】化简得圆C的标准方程为,故圆心是,半径,则连接线段OC,交圆于点P时最小,因为原点到圆心的距离,故此时.故选:B.12、C【解析】先计算从金、木、水、火、土五种元素中任取两种的所有基本事件数,再计算其中两种元素恰是相生关系的基本事件数,利用古典概型概率公式,即得解【详解】由题意,从金、木、水、火、土五种元素中任取两种,共有(金,木),(金,水),(金,火),(金,土),(木,水),(木,火),(木土),(水,火),(水,土),(火,土),共10个基本事件,其中两种元素恰是相生关系包含(金,木),(木,土),(土,水),(水,火)(火,金)共5个基本事件,所以所求概率.故选:C二、填空题:本题共4小题,每小题5分,共20分。13、【解析】欲求两圆圆心的距离,将它放在与球心组成的三角形中,只要求出球心角即可,通过球的性质构成的直角三角形即可解得【详解】∵,球半径为4,∴小圆的半径为,∵小圆中弦长,作垂直于,∴,同理可得,在直角三角形中,∵,,∴,∴,∴故答案为:.14、(1,1,1)【解析】设PD=a,则D(0,0,0),A(2,0,0),B(2,2,0),P(0,0,a),E(1,1,),∴=(0,0,a),=(-1,1,)由cos〈,〉=,∴=a·,∴a=2.∴E的坐标为(1,1,1)15、1【解析】利用导数研究的最小值为,再构造研究其最值,即可确定参数a的值.【详解】令,则且,当时,递减;当时,递增;所以,即在上恒成立,令,则,当时,递增;当时,递减;所以,综上,.故答案为:116、【解析】根据递推关系依次求得的值.【详解】依题意数列满足,,所以.故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析(2)【解析】(1)连接EC,设EB与AC相交于点O,结合已知条件利用线面平行的判定定理可证得OG//平面PEF,再由三角形中位线定理结合线面垂直的判定定理可得AC//平面PEF,从而由面面垂直的判定可得平面PEF//平面GAC,进而可证得结论,(2)由已知可证得PA、AB、AD两两互相垂直,以A为原点,AB,AD,AP所在的直线为x轴,y轴,z轴,建立空间直角坐标系,利用空间向量求解即可【小问1详解】证明:连接EC,设EB与AC相交于点O,如图,因为BC//AD,且,AB⊥AD,所以四边形ABCE为矩形,所以O为EB的中点,又因为G为PB的中点,所以OG为△PBE的中位线,即OG∥PE,因为OG平面PEF,PE⊂平面PEF,所以OG//平面PEF,因为E,F分别为线段AD,DC的中点,所以EF//AC,因为AC平面PEF,EF⊂平面PEF,所以AC//平面PEF,因为OG⊂平面GAC,AC⊂平面GAC,AC∩OG=O,所以平面PEF//平面GAC,因为PF⊂平面PEF,所以PF//平面GAC.【小问2详解】因为PA⊥底面ABCD,AB⊂平面ABCD,AD⊂平面ABCD,所以PA⊥AB,PA⊥AD,因为AB⊥AD,所以PA、AB、AD两两互相垂直,以A为原点,AB,AD,AP所在的直线为x轴,y轴,z轴,建立空间直角坐标系,如图所示:则A(0,0,0),,C(1,1,0),D(0,2,0),P(0,0,1),所以,设平面ACG的法向量为,则,所以,令x=1,可得y=﹣1,z=﹣1,所以,设直线PD与平面ACG所成角为θ,则,所以直线PD与平面ACG所成角的正弦值为.18、(1)(2)【解析】(1)建立空间直角坐标系,求出相关各点坐标,求出,利用向量的夹角公式求得答案;(2)求出平面平面和平面的一个法向量,利用向量夹角公式求得答案.【小问1详解】以为正交基底,建立如图所示的空间直角坐标系,则,,所以,所以直线所成角的余弦值为;【小问2详解】设为平面的一个法向量,,则m⋅,同理,则,可取平面的一个法向量为,则,由图可知二面角为锐角,所以二面角的余弦值为.19、(1)(2)【解析】(1)根据椭圆的定义和性质,建立方程求出,即可(2)设的方程为,,,,,设的方程为,,,,,分别联立直线方程和椭圆方程,运用韦达定理和判别式大于0,以及弦长公式,求得,,运用菱形和椭圆的对称性可得,关于原点对称,结合菱形的对角线垂直和向量数量积为0,可得,设菱形的周长为,运用基本不等式,计算可得所求最大值【小问1详解】点在线段的垂直平分线上,,又,曲线是以坐标原点为中心,和为焦点,长轴长为的椭圆设曲线的方程为,,,曲线的方程为【小问2详解】设的方程为,,,,,设的方程为,,,,,联立可得,由可得,化简可得,①,,,同理可得,因为四边形为菱形,所以,所以,又因为,所以,所以,关于原点对称,又椭圆关于原点对称,所以,关于原点对称,,也关于原点对称,所以且,所以,,,,因为四边形为菱形,可得,即,即,即,可得,化简可得,设菱形的周长为,则,当且仅当,即时等号成立,此时,满足①,所以菱形的周长的最大值为【点睛】关键点点睛:在处理此类直线与椭圆相交问题中,一般先设出直线方程,联立方程,利用韦达定理得出,,再具体问题具体分析,一般涉及弦长计算问题,运算比较繁琐,需要较强的运算能力,属于难题。20、(1),;(2).【解析】(1)由,根据等比数列的性质求得、的值,即可得的通项公式,再根据列出关于首项、公差的方程组,解方程组可得与的值,从而可得数列的通项公式;(2)结合(1)可得,根据错位相减法,利用等比数列求和公式可得结果.【详解】(1)等比数列的公比,所以,设等差数列公差为因为,,所以,即所以(2)由(1)知,,因此从而数列的前项和,,,两式作差可得,,解得.【点睛】本题主要考查等比数列和等差数列的通项、等比数列的求和公式以及错位相减法求数列的前项和,属于中档题.一般地,如果数列是等差数列,是等比数列,求数列的前项和时,可采用“错位相减法”求和,一般是和式两边同乘以等比数列的公比,然后作差求解,在写出“”与“”的表达式时应特别注意将两式“错项对齐”以便下一步准确写出“”的表达式.21、(1).(2)10.【解析】(1)借助于将转化为,进而得到数列为等比数列,通过首项和公比求得通项公式;(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024版暖气片购销合同正规范本
- 2025年度金融产品创新设计与推广服务合同2篇
- 2025年度绿色环保项目合伙人投资合作协议2篇
- 2025年度科技创新产品采购项目委托代理服务合同3篇
- 2025年度科技园区不动产使用权出让合同3篇
- 2025年诉讼保全担保流程执行与赔偿责任合同3篇
- 二零二五年度酒店行业员工派遣合同3篇
- 养殖场2025年度保险服务合同3篇
- 二零二五版财产保全担保与诉讼保全合同3篇
- 2025年度龙门吊租赁及项目管理咨询服务合同4篇
- 餐饮行业智慧餐厅管理系统方案
- 2025年度生物医药技术研发与许可协议3篇
- 电厂检修安全培训课件
- 殡葬改革课件
- 2024企业答谢晚宴会务合同3篇
- 双方个人协议书模板
- 车站安全管理研究报告
- 初中中考英语总复习《代词动词连词数词》思维导图
- 植物和五行关系解说
- 沪教牛津版初中英语七年级下册全套单元测试题
- 因式分解法提公因式法公式法
评论
0/150
提交评论