![安徽省示范中学2024届高二数学第一学期期末经典试题含解析_第1页](http://file4.renrendoc.com/view/031005e6a68900090e189d799dbdec2c/031005e6a68900090e189d799dbdec2c1.gif)
![安徽省示范中学2024届高二数学第一学期期末经典试题含解析_第2页](http://file4.renrendoc.com/view/031005e6a68900090e189d799dbdec2c/031005e6a68900090e189d799dbdec2c2.gif)
![安徽省示范中学2024届高二数学第一学期期末经典试题含解析_第3页](http://file4.renrendoc.com/view/031005e6a68900090e189d799dbdec2c/031005e6a68900090e189d799dbdec2c3.gif)
![安徽省示范中学2024届高二数学第一学期期末经典试题含解析_第4页](http://file4.renrendoc.com/view/031005e6a68900090e189d799dbdec2c/031005e6a68900090e189d799dbdec2c4.gif)
![安徽省示范中学2024届高二数学第一学期期末经典试题含解析_第5页](http://file4.renrendoc.com/view/031005e6a68900090e189d799dbdec2c/031005e6a68900090e189d799dbdec2c5.gif)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
安徽省示范中学2024届高二数学第一学期期末经典试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.如图,在正方体中,点E是上底面的中心,则异面直线与所成角的余弦值为()A. B.C. D.2.已知,则点到平面的距离为()A. B.C. D.3.已知直线与圆交于两点,过分别作的垂线与轴交于两点,则A.2 B.3C. D.44.2021年11月,郑州二七罢工纪念塔入选全国职工爱国主义教育基地名单.某数学建模小组为测量塔的高度,获得了以下数据:甲同学在二七广场A地测得纪念塔顶D的仰角为45°,乙同学在二七广场B地测得纪念塔顶D的仰角为30°,塔底为C,(A,B,C在同一水平面上,平面ABC),测得,,则纪念塔的高CD为()A.40m B.63mC.m D.m5.与圆和圆都外切的圆的圆心在()A.一个圆上 B.一个椭圆上C.双曲线的一支上 D.一条抛物线上6.设双曲线:的左,右焦点分别为,,过的直线与双曲线的右支交于A,B两点,若,则双曲线的离心率为()A.4 B.2C. D.7.下列函数中,以为最小正周期,且在上单调递减的为()A. B.C. D.8.若双曲线的一个焦点为,则的值为()A. B.C.1 D.9.执行如图所示的算法框图,则输出的结果是()A. B.C. D.10.已知空间向量,,,则()A.4 B.-4C.0 D.211.在矩形中,,在该矩形内任取一点M,则事件“”发生的概率为()A. B.C. D.12.经过点,且被圆所截得的弦最短时的直线的方程为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.点到抛物线上的点的距离的最小值为________.14.数列中,,,设(1)求证:数列是等比数列;(2)求数列的前项和;(3)若,为数列的前项和,求不超过的最大的整数15.已知圆锥的高为,体积为,则以该圆锥的母线为半径的球的表面积为______________.16.某校组织了一场演讲比赛,五位评委对某位参赛选手的评分分别为9,x,8,y,9.已知这组数据的平均数为8.6,方差为0.24,则______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)一个盒中装有编号分别为、、、的四个形状大小完全相同的小球.(1)从盒中任取两球,列出所有的基本事件,并求取出的球的编号之和大于的概率;(2)从盒中任取一球,记下该球的编号,将球放回,再从盒中任取一球,记下该球的编号,列出所有的基本事件,并求的概率.18.(12分)已知数列中,,且满足(1)求证数列是等差数列,并求数列的通项公式;(2)求数列的前n项和19.(12分)在①,;②,;③,.这三个条件中任选一个,补充在下面问题中.问题:已知数列的前n项和为,,___________.(1)求数列的通项公式(2)已知,求数列的前n项和.20.(12分)已知△ABC的内角A,B,C的对边分别为a,b,c,满足(2a﹣b)sinA+(2b﹣a)sinB=2csinC.(1)求角C的大小;(2)若cosA=,求的值.21.(12分)已知抛物线的方程为,点,过点的直线交抛物线于两点(1)求△OAB面积的最小值(为坐标原点);(2)是否为定值?若是,求出该定值;若不是,说明理由22.(10分)已知圆C的圆心C在直线上,且与直线相切于点.(1)求圆C的方程;(2)过点的直线与圆C交于两点,线段的中点为M,直线与直线的交点为N.判断是否为定值.若是,求出这个定值,若不是,说明理由.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】建立空间直角坐标系,利用向量夹角求解.【详解】以为原点,为轴正方向建立空间直角坐标系如图所示,设正方体棱长为2,所以,所以异面直线与所成角的余弦值为.故选:B2、A【解析】根据给定条件求出平面的法向量,再利用空间向量求出点到平面的距离.【详解】依题意,,设平面的法向量,则,令,得,则点到平面的距离为,所以点到平面的距离为.故选:A3、D【解析】由题意,圆心到直线的距离,∴,∵直线∴直线的倾斜角为,∵过分别作的垂线与轴交于两点,∴,故选D.4、B【解析】设,先表示出,再利用余弦定理即可求解.【详解】如图所示,,设塔高为,因为平面ABC,所以,所以,又,即,解得.故选:B.5、C【解析】设动圆的半径为,然后根据动圆与两圆都外切得,再两式相减消去参数,则满足双曲线的定义,即可求解.【详解】设动圆的圆心为,半径为,而圆的圆心为,半径为1;圆的圆心为,半径为2依题意得,则,所以点的轨迹是双曲线的一支故选:C6、B【解析】根据双曲线的定义及,求出,,,,再利用余弦定理计算可得;【详解】解:依题意可知、,又且,所以,,,,则,且,即,即,所以离心率.故选:B7、B【解析】A.利用正切函数的性质判断;B.作出的图象判断;C.作出的图象判断;D.作出的图象判断.【详解】A.是以为最小正周期,在上单调递增,故错误;B.如图所示:,由图象知:函数是以为最小正周期,在上单调递减,故正确;C.如图所示:,由图象知:是以为最小正周期,在上单调递增,故错误;D.如图所示:,由图象知:是以为最小正周期,在上单调递增,故错误;故选:B8、B【解析】由题意可知双曲线的焦点在轴,从而可得,再列方程可求得结果【详解】因为双曲线的一个焦点为,所以,,所以,解得,故选:B9、B【解析】列举出循环的每一步,利用裂项相消法可求得输出结果.【详解】第一次循环,不成立,,;第二次循环,不成立,,;第三次循环,不成立,,;以此类推,最后一次循环,不成立,,.成立,跳出循环体,输出.故选:B.10、A【解析】根据空间向量平行求出x,y,进而求得答案.【详解】因为,所以存在实数,使得,则.故选:A.11、D【解析】利用几何概型的概率公式,转化为面积比直接求解.【详解】以AB为直径作圆,当点M在圆外时,.所以事件“”发生的概率为.故选:D12、C【解析】当是弦中点,她能时,弦长最短.由此可得直线斜率,得直线方程【详解】根据题意,圆心为,当与直线垂直时,点被圆所截得的弦最短,此时,则直线的斜率,则直线的方程为,变形可得,故选:C.【点睛】本题考查直线与圆相交弦长问题,掌握垂径定理是求解圆弦长问题的关键二、填空题:本题共4小题,每小题5分,共20分。13、【解析】设出抛物线上点的坐标,利用两点间距离公式,配方求出最小值.【详解】设抛物线上的点坐标,则,当时,取得最小值,且最小值为.故答案为:14、(1)证明见解析;(2);(3)2021【解析】(1)将两边都加,证明是常数即可;(2)求出的通项,利用错位相减法求解即可;(3)先求出,再求出的表达式,利用裂项相消法即可得解.【详解】(1)将两边都加,得,而,即有,又,则,,所以数列是首项为,公比为的等比数列;(2)由(1)知,,则,,,因此,,所以;(3)由(2)知,于是得,则,因此,,所以不超过的最大的整数是202115、【解析】利用圆锥体积公式可求得圆锥底面半径,利用勾股定理可得母线长;根据球的表面积公式可求得结果.【详解】设圆锥的底面半径为,母线长为,圆锥体积,,,以为半径的球的表面积.故答案为:.16、1【解析】根据平均数和方差的计算公式,求得,则问题得解.【详解】由题可知:整理得:;,整理得:,联立方程组得,解得或,对应或,故.故答案为:1.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)基本事件答案见解析,概率为;(2)基本事件答案见解析,概率为.【解析】(1)利用列举法列举出所有的基本事件,并确定事件“取出的球的编号之和大于”所包含的基本事件数,利用古典概型的概率公式可求得结果;(2)利用列举法列举出所有的基本事件,并确定事件“”所包含的基本事件数,利用古典概型的概率公式可求得结果.【详解】(1)记“从盒中任取两球,取出球的编号之和大于”为事件,样本点表示“从盒中取出、号球”,且和表示相同的样本点(以此类推),则样本空间为,则,根据古典概型可知,从盒中任取两球,取出球的编号之和大于的概率为;(2)记“”为事件,样本点表示第一次取出号球,将球放回,从盒中取出号球(以此类推),则样本空间,则,所以,故事件“”的概率为.18、(1)证明见解析;;(2).【解析】(1)根据等差数列的定义证明为常数即可;(2)利用错位相减法即可求和.【小问1详解】由得,,∴数列是以1为首项,1为公差的等差数列,∴,∴;【小问2详解】①,②,①-②得:,.19、(1)(2)【解析】(1)选①,利用化已知等式为,得是等差数列,公差,求出其通项公式后,再由求得通项公式,注意;选②,由可变形已知条件得是等差数列,从而求得通项公式;选③,已知式两边同除以,得出,以下同选①;(2)由错位相减法求和【小问1详解】选①,由得,,所以,即,所以是等差数列,公差,又,,,所以,,时,也适合所以;选②,由得,所以等差数列,公差为,又,所以;选③,由得,以下同选①,【小问2详解】由(1),,,两式相减得,所以20、(1)(2)【解析】(1)利用正弦定理、余弦定理化简已知条件,求得,由此求得.(2)先求得,结合两角差的正弦公式求得.【小问1详解】,,即,,,.【小问2详解】由,可得,.21、(1);(2)是,该定值.【解析】(1)根据弦长公式、点到直线距离公式,结合三角形面积公式进行求解即可;(2)根据两点间距离公式,结合一元二次方程根与系数的关系进行求解即可.【小问1详解】显然直线存在斜率,设直线的方程为:,所以有,设,则有,,原点到直线的距离为:,△OAB的面积为:,当时,有最小值,最小值为;【小问2详解】是定值,理由如下:由(1)可知:,,【点睛】关键点睛:利用一元二次方程根与系数关系是解题的关键.22、(1)(2)【解析】(1)设过点且与直线垂直的直线为,将代入直线方程,即可求出,再与求交点坐标,得到圆心坐标,再求出半径,即可得解;(2)分直线的斜率存在与不存在两种情况讨论,当斜率不存在直接求出、的坐标,即可求出,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度交通安全知识普及与驾驶技能培训合同
- 企业并购居间合同委托书
- 二零二五年度办公室劳动合同地址确认及员工离职补偿协议
- 三农田灌溉方案与实施手册
- 汽车维修保养规范手册
- 医疗器械产品采购合同
- 石材购销合同补充合同
- 合作收购不良资产协议
- 人力资源管理劳动法律法规遵守作业指导书
- 企业并购交易操作指导书
- 2025年度有限责任公司拆伙协议书范本4篇
- 【8道期末】安徽省芜湖市2024-2025学年八年级上学期期末道德与法治试题(含解析)
- 2025中考关于名词的语法填空专练(二)(含答案)
- 3可伸缩的橡皮筋 说课稿-2023-2024学年科学二年级下册冀人版
- 班组现场5S与目视化管理
- 和达投资集团(杭州)有限公司招聘笔试冲刺题2025
- 政企单位春节元宵猜灯谜活动谜语200个(含谜底)
- 统编版2024-2025学年一年级上册期末语文素养评估卷(含答案)
- 专题15 机械振动与机械波(讲义)(解析版)-2024年高考二轮复习
- 养生馆拓客培训
- 《大学计算机基础》第2章计算机系统组成
评论
0/150
提交评论