安徽省阜阳市颍州区阜阳三中2024届数学高二上期末达标检测模拟试题含解析_第1页
安徽省阜阳市颍州区阜阳三中2024届数学高二上期末达标检测模拟试题含解析_第2页
安徽省阜阳市颍州区阜阳三中2024届数学高二上期末达标检测模拟试题含解析_第3页
安徽省阜阳市颍州区阜阳三中2024届数学高二上期末达标检测模拟试题含解析_第4页
安徽省阜阳市颍州区阜阳三中2024届数学高二上期末达标检测模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

安徽省阜阳市颍州区阜阳三中2024届数学高二上期末达标检测模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知抛物线内一点,过点的直线交抛物线于,两点,且点为弦的中点,则直线的方程为()A. B.C D.2.已知双曲线,其渐近线方程为,则a的值为()A. B.C. D.23.设等差数列的前n项和为,若,,则()A.60 B.80C.90 D.1004.已知函数的导函数的图像如图所示,则下列说法正确的是()A.是函数的极大值点B.函数在区间上单调递增C.是函数的最小值点D.曲线在处切线的斜率小于零5.变量,满足约束条件则的最小值为()A. B.C. D.56.【2018江西抚州市高三八校联考】已知双曲线(,)与抛物线有相同的焦点,且双曲线的一条渐近线与抛物线的准线交于点,则双曲线的离心率为()A. B.C. D.7.我们知道∶用平行于圆锥母线的平面(不过顶点)截圆锥,则平面与圆锥侧面的交线是抛物线一部分,如图,在底面半径和高均为2的圆锥中,AB、CD是底面圆O的两条互相垂直的直径,E是母线PB的中点,已知过CD与E的平面与圆锥侧面的交线是以E为顶点的圆锥曲线的一部分,则该圆锥曲线的焦点到其准线的距离等于()A. B.C. D.18.已知函数,则函数在点处的切线方程为()A. B.C. D.9.总体有编号为01,02,…,19,20的20个个体组成,利用下面的随机数表选取3个个体,选取方法是从随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字,则选出来的第3个个体的编号为()7816657208026314070243699728019832049234493582003623486969387481A.08 B.02C.63 D.1410.已知双曲线,点F为其左焦点,点B,若BF所在直线与双曲线的其中一条渐近线垂直,则该双曲线的离心率为()A. B.C. D.11.已知角的顶点与坐标原点重合,始边与x轴的非负半轴重合,角终边上有一点,为锐角,且,则()A. B.C. D.12.函数的图象如图所示,是f(x)的导函数,则下列数值排序正确的是()A B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知圆被轴截得的弦长为4,被轴分成两部分的弧长之比为1∶2,则圆心的轨迹方程为______,若点,,则周长的最小值为______14.已知满足的双曲线(a,b>0,c为半焦距)为黄金双曲线,则黄金双曲线的离心率为______15.在下列所示电路图中,下列说法正确的是____(填序号)(1)如图①所示,开关A闭合是灯泡B亮的充分不必要条件;(2)如图②所示,开关A闭合是灯泡B亮的必要不充分条件;(3)如图③所示,开关A闭合是灯泡B亮的充要条件;(4)如图④所示,开关A闭合是灯泡B亮的必要不充分条件16.经过两点的直线的倾斜角为,则___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)设等差数列的各项均为整数,且满足对任意正整数,总存在正整数,使得,则称这样的数列具有性质(1)若数列的通项公式为,数列是否具有性质?并说明理由;(2)若,求出具有性质的数列公差的所有可能值;(3)对于给定的,具有性质的数列是有限个,还是可以无穷多个?(直接写出结论)18.(12分)某莲藕种植塘每年的固定成本是2万元,每年最大规模的种植量是8万千克,每种植1万千克莲藕,成本增加0.5万元.种植万千克莲藕的销售额(单位:万元)是(是常数),若种植2万千克莲藕,利润是1.5万元,求:(1)种植万千克莲藕利润(单位:万元)为的解析式;(2)要使利润最大,每年需种植多少万千克莲藕,并求出利润的最大值.19.(12分)已知椭圆:的左、右焦点分别为,,离心率等于,点,且的面积等于(1)求椭圆的标准方程;(2)已知斜率存在且不为0的直线与椭圆交于A,B两点,当点A关于y轴的对称点在直线PB上时,直线是否过定点?若过定点,求出此定点;若不过,请说明理由20.(12分)已知四边形是空间直角坐标系中的一个平行四边形,且,,(1)求点的坐标;(2)求平行四边形的面积21.(12分)【2018年新课标I卷文】已知函数(1)设是的极值点.求,并求的单调区间;(2)证明:当时,22.(10分)已知圆,直线(1)判断直线与圆的位置关系;(2)若直线与圆交于不同两点,且,求直线的方程

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】利用点差法求出直线斜率,即可得出直线方程.【详解】设,则,两式相减得,即,则直线方程为,即.故选:B.2、A【解析】由双曲线方程,根据其渐近线方程有,求参数值即可.【详解】由渐近线,结合双曲线方程,∴,可得.故选:A.3、D【解析】由题设条件求出,从而可求.【详解】设公差为,因为,,故,解得,故,故选:D.4、B【解析】根据导函数的图象,得到函数的单调区间与极值点,即可判断;【详解】解:由导函数的图象可知,当时,当时,当时,当或时,则在上单调递增,在上单调递减,所以函数在处取得极小值即最小值,所以是函数的极小值点与最小值点,因为,所以曲线在处切线的斜率大于零,故选:B5、A【解析】根据不等式组,作出可行域,数形结合即可求z的最小值.【详解】根据不等式组作出可行域如图,,则直线过A(-1,0)时,z取最小值.故选:A.6、C【解析】由题意可知,抛物线的焦点坐标为,准线方程为,由在抛物线的准线上,则,则,则焦点坐标为,所以,则,解得,双曲线的渐近线方程是,将代入渐近线的方程,即,则双曲线的离心率为,故选C.7、C【解析】由圆锥的底面半径和高及E的位置可得,建立适当的平面直角坐标系,可得C的坐标,设抛物线的方程,将C的坐标代入求出抛物线的方程,进而可得焦点到其准线的距离【详解】设AB,CD的交点为,连接PO,由题意可得PO⊥面AB,所以PO⊥OB,由题意OB=OP=OC=2,因为E是母线PB的中点,所以,由题意建立适当的坐标系,以BP为y轴以OE为x轴,E为坐标原点,如图所示∶可得∶,设抛物线的方程为y2=mx,将C点坐标代入可得,所以,所以抛物线的方程为∶,所以焦点坐标为,准线方程为,所以焦点到其准线的距离为故选:C8、C【解析】依据导数几何意义去求函数在点处的切线方程即可解决.【详解】则,又则函数在点处的切线方程为,即故选:C9、D【解析】由随机数表法抽样原理即可求出答案.【详解】根据题意,依次读出的数据为65(舍去),72(舍去),08,02,63(舍去),14,即第三个个体编号为14.故选:D.10、C【解析】设出双曲线半焦距c,利用斜率坐标公式结合垂直关系列式计算作答.【详解】设双曲线半焦距为c,则,直线BF的斜率为,双曲线的渐近线为:,因直线BF与双曲线的一条渐近线垂直,则有,即,于是得,而,解得,所以双曲线的离心率为.故选:C11、C【解析】根据角终边上有一点,得到,再根据为锐角,且,求得,再利用两角差的正切函数求解.【详解】因为角终边上有一点,所以,又因为为锐角,且,所以,所以,故选:C12、A【解析】结合导数的几何意义确定正确选项.【详解】,表示两点连线斜率,表示在处切线的斜率;表示在处切线的斜率;根据图象可知,.故选:A二、填空题:本题共4小题,每小题5分,共20分。13、①.②.【解析】设,圆半径为,进而根据题意得,,进而得其轨迹方程为双曲线,再根据双曲线的定义,将周长转化为求的最小值,进而求解.【详解】解:如图1,因为圆被轴截得的弦长为4,被轴分成两部分的弧长之比为1∶2,所以,,所以中点,则,,所以,故设,圆半径为,则,,,所以,即所以圆心的轨迹方程为,表示双曲线,焦点为,,如图2,连接,由双曲线的定义得,即,所以周长为,因为,所以周长的最小值为故答案为:;.14、##【解析】根据题设及双曲线离心率公式可得,结合双曲线离心率的性质即可求离心率.【详解】由题设,,整理得:,所以,而,故.故答案为:.15、(1)(2)(3)【解析】充分不必要条件是该条件成立时,可推出结果,但结果不一定需要该条件成立;必要条件是有结果必须有这一条件,但是有这一条件还不够;充要条件是条件和结果可以互推;条件和结果没有互推关系的是既不充分也不必要条件【详解】(1)开关闭合,灯泡亮;而灯泡亮时,开关不一定闭合,所以开关闭合是灯泡亮的充分不必要条件,选项(1)正确.(2)开关闭合,灯泡不一定亮;而灯泡亮时,开关必须闭合,所以开关闭合是灯泡亮的必要不充分条件,选项(2)正确.(3)开关闭合,灯泡亮;而灯泡亮时,开关必须闭合,所以开关闭合是灯泡亮的充要条件,选项(3)正确.(4)开关闭合,灯泡不一定亮;而灯泡亮时,开关不一定闭合,所以开关闭合是灯泡亮的既不充分也不必要条件,选项(4)错误.故答案为(1)(2)(3).16、2【解析】由两点间的斜率公式及直线斜率的定义即可求解.【详解】解:因为过两点的直线的倾斜角为,所以,解得,故答案为:2.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)数列具有性质,理由见解析;(2),;(3)有限个.【解析】(1)由题意,由性质定义,即可知是否具有性质.(2)由题设,存在,结合已知得且,则,由性质的定义只需保证为整数即可确定公差的所有可能值;(3)根据(2)的思路,可得且,由为整数,在为定值只需为整数,即可判断数列的个数是否有限.【小问1详解】由,对任意正整数,,说明仍为数列中的项,∴数列具有性质.【小问2详解】设的公差为.由条件知:,则,即,∴必有且,则,而此时对任意正整数,,又必一奇一偶,即为非负整数因此,只要为整数且,那么为中的一项.易知:可取,对应得到个满足条件的等差数列.【小问3详解】同(2)知:,则,∴必有且,则,故任意给定,公差均为有限个,∴具有性质的数列是有限个.【点睛】关键点点睛:根据性质的定义,在第2、3问中判断满足等差数列通项公式,结合各项均为整数,判断公差的个数是否有限即可.18、(1),;(2)6万千克,万元.【解析】(1)根据题意找等量关系即可求g(x)解析式,根据函数值可求a;(2)根据g(x)导数研究其单调性并求其最大值即可.【小问1详解】种植万千克莲藕的利润(单位:万元)为:,,即,,当时,,解得,故,;【小问2详解】,当时,,当时,,∴函数在上单调递增,在上单调递减,∴时,利润最大为万元.19、(1)(2)【解析】(1)用待定系数法求出椭圆的标准方程;(2)设直线的方程为,设,用“设而不求法”表示出和.表示出直线PB,把A关于y轴的对称点为带入后整理化简,即可得到,从而可以判断出直线恒过定点.【小问1详解】由题意可得:,解得:,所以椭圆的标准方程为:.【小问2详解】由题意可知,直线的斜率存在且不为0,设直线的方程为,设设点A关于y轴的对称点为.联立方程组,消去y可得:,所以.因为直线PB的方程为,且点D在直线PB上,所以则,所以,则,故,因为k≠0,所以,则直线l的方程为,所以直线恒过定点.20、(1);(2)【解析】(1)由题设可得,结合向量的共线坐标表示求的坐标;(2)向量的坐标运算求边长,由余弦定理求,进而求其正弦值,再应用三角形面积公式求面积.【小问1详解】由题设,,令,则,∴,可得,故.【小问2详解】由(1),,,则,又,则,∴平行四边形的面积.21、(1)a=;f(x)在(0,2)单调递减,在(2,+∞)单调递增.(2)证明见解析.【解析】分析:(1)先确定函数的定义域,对函数求导,利用f′(2)=0,求得a=,从而确定出函数的解析式,之后观察导函数的解析式,结合极值点的位置,从而得到函数的增区间和减区间;(2)结合指数函数的值域,可以确定当a≥时,f(x)≥,之后构造新函数g(x)=,利用导数研究函数的单调性,从而求得g(x)≥g(1)=0,利用不等式的传递性,证得结果.详解:(1)f(x)的定义域为,f′(x)=aex–由题设知,f′(2)=0,所以a=从而f(x)=,f′(x)=当0<x<2时,f′(x)<0;当x>2时,f′(x)>0所以f(x)在(0,2)单调递减,在(2,+∞)单调递增(2)当a≥时,f(x)≥设g(x)=,则当0<x<1时,g′(x)<0;当x>1时,g′(x)>0.所以x=1是g(x)的最小值点故当x>0时,g(x)≥g(1)=0因此,当时,点睛:该题考查的是有关导数的应用问题,涉及到的知识点有导数与极值、导数与最值

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论