版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
福建省漳州市龙海市程溪中学2023年高二上数学期末综合测试模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.直线被椭圆截得的弦长是A. B.C. D.2.已知直线,,点是抛物线上一点,则点到直线和的距离之和的最小值为()A.2 B.C.3 D.3.圆心,半径为的圆的方程是()A. B.C. D.4.若指数函数(且)与三次函数的图象恰好有两个不同的交点,则实数的取值范围是()A. B.C. D.5.函数的图象在点处的切线的倾斜角为()A. B.0C. D.16.直线的一个方向向量为,则它的斜率为()A. B.C. D.7.某高中学校高二和高三年级共有学生人,为了解该校学生的视力情况,现采用分层抽样的方法从三个年级中抽取一个容量为的样本,其中高一年级抽取人,则高一年级学生人数为()A. B.C. D.8.若函数有两个不同的极值点,则实数的取值范围是()A. B.C. D.9.已知,若与的展开式中的常数项相等,则()A.1 B.3C.6 D.910.已知倾斜角为的直线与双曲线,相交于,两点,是弦的中点,则双曲线的渐近线的斜率是()A. B.C. D.11.程大位是明代著名数学家,他的《新编直指算法统宗》是中国历史上一部影响巨大的著作.它问世后不久便风行宇内,成为明清之际研习数学者必读的教材,而且传到朝鲜、日本及东南亚地区,对推动汉字文化圈的数学发展起了重要的作用.卷八中第33问是:“今有三角果一垛,底阔每面七个.问该若干?”如图是解决该问题的程序框图.执行该程序框图,求得该垛果子的总数为()A.120 B.84C.56 D.2812.若双曲线与椭圆有公共焦点,且离心率,则双曲线的标准方程为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知点和,圆,当圆C与线段没有公共点时,则实数m的取值范围为___________14.若,则__________15.已知,,且,则的值是_________.16.已知某圆锥的高为4,体积为,则其侧面积为________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在等差数列中,,(1)求的通项公式;(2)设,求数列的前项和18.(12分)(1)某校运动会上甲、乙、丙、丁四名同学在100m、400m、800m三个项目中选择,每人报一项,共有多少种报名方法?(2)若甲、乙、丙、丁四名同学选报100m、400m、800m三个项目,每项均有一人报名,且每人至多报一项,共有多少种报名方法?(3)若甲、乙、丙、丁名同学争夺100m、400m、800m三项冠军,共有多少种可能的结果?19.(12分)数列{}的首项为,且(1)证明数列为等比数列,并求数列{}的通项公式;(2)若,求数列{}的前n项和20.(12分)近年来,由于耕地面积的紧张,化肥的施用量呈增加趋势,一方面,化肥的施用对粮食增产增收起到了关键作用,另一方面,也成为环境污染,空气污染,土壤污染的重要来源之一.如何合理地施用化肥,使其最大程度地促进粮食增产,减少对周围环境的污染成为需要解决的重要问题.研究粮食产量与化肥施用量的关系,成为解决上述问题的前提.某研究团队收集了10组化肥施用量和粮食亩产量的数据并对这些数据作了初步处理,得到了如图所示的散点图及一些统计量的值,化肥施用量为x(单位:公斤),粮食亩产量为y(单位:百公斤).参考数据:65091.552.51478.630.5151546.5表中.(1)根据散点图判断与,哪一个适宜作为粮食亩产量y关于化肥施用量x的回归方程类型(给出判断即可,不必说明理由);(2)根据(1)的判断结果及表中数据,建立y关于x的回归方程;并预测化肥施用量为27公斤时,粮食亩产量y的值;(3)经生产技术提高后,该化肥的有效率Z大幅提高,经试验统计得Z大致服从正态分布N),那这种化肥的有效率超过58%的概率约为多少?附:①对于一组数据,其回归直线的斜率和截距的最小二乘估计分别为;②若随机变量,则有,;③取.21.(12分)在△ABC中,角A,B,C的对边分别为a,b,c,且满足bcosA+(2c+a)cosB=0(1)求角B的大小;(2)若b=4,△ABC的面积为,求a+c的值22.(10分)设函数(Ⅰ)求的单调区间;(Ⅱ)若,为整数,且当时,恒成立,求的最大值.(其中为的导函数.)
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】直线y=x+1代入,得出关于x的二次方程,求出交点坐标,即可求出弦长【详解】将直线y=x+1代入,可得,即5x2+8x﹣4=0,∴x1=﹣2,x2,∴y1=﹣1,y2,∴直线y=x+1被椭圆x2+4y2=8截得的弦长为故选A【点睛】本题查直线与椭圆的位置关系,考查弦长的计算,属于基础题2、C【解析】由抛物线的定义可知点到直线和的距离之和的最小值即为焦点到直线的距离.【详解】解:由题意,抛物线的焦点为,准线为,所以根据抛物线的定义可得点到直线的距离等于,所以点到直线和的距离之和的最小值即为焦点到直线的距离,故选:C.3、D【解析】根据圆心坐标及半径,即可得到圆的方程.【详解】因为圆心为,半径为,所以圆的方程为:.故选:D.4、A【解析】分析可知直线与曲线在上的图象有两个交点,令可得出,令,问题转化为直线与曲线有两个交点,利用导数分析函数的单调性与极值,数形结合可得出实数的取值范围.【详解】当时,,,此时两个函数的图象无交点;当时,由得,可得,令,其中,则直线与曲线有两个交点,,当时,,此时函数单调递增,当时,,此时函数单调递减,则,且当时,,作出直线与曲线如下图所示:由图可知,当时,即当时,指数函数(且)与三次函数的图象恰好有两个不同的交点.故选:A.5、A【解析】求出导函数,计算得切线斜率,由斜率求得倾斜角【详解】,设倾斜角为,则,,故选:A6、A【解析】根据的方向向量求得斜率.【详解】且是直线的方向向量,.故选:A7、B【解析】先得到从高二和高三年级抽取人,再利用分层抽样进行求解.【详解】设高一年级学生人数为,因为从三个年级中抽取一个容量为的样本,且高一年级抽取人,所以从高二和高三年级抽取人,则,解得,即高一年级学生人数为.故选:B8、D【解析】计算,然后等价于在(0,+∞)由2个不同的实数根,然后计算即可.【详解】的定义域是(0,+∞),,若函数有两个不同的极值点,则在(0,+∞)由2个不同的实数根,故,解得:,故选:D.【点睛】本题考查根据函数极值点个数求参,考查计算能力以及思维转变能力,属基础题.9、B【解析】根据二项展开式的通项公式即可求出【详解】的展开式中的常数项为,而的展开式中的常数项为,所以,又,所以故选:B10、A【解析】依据点差法即可求得的关系,进而即可得到双曲线的渐近线的斜率.【详解】设,则由,可得则,即,则则双曲线的渐近线的斜率为故选:A11、B【解析】按照框图中程序,逐步执行循环,即可求得答案.【详解】第一次循环:,,第二次循环:,,第三次循环:,,第四次循环:,,第五次循环:,,第六次循环:,,第七次循环:,,退出循环,输出.故选:B12、A【解析】首先求出椭圆的焦点坐标,然后根据可得双曲线方程中的的值,然后可得答案.【详解】椭圆焦点坐标为所以双曲线的焦点在轴上,,因为,所以,所以双曲线的标准方程为故选:A二、填空题:本题共4小题,每小题5分,共20分。13、【解析】当点和都在圆的内部时,结合点与圆的位置关系得出实数m的取值范围,再由圆心到直线的距离大于半径得出实数m的取值范围.【详解】当点和都在圆的内部时,,解得或直线的方程为,即圆心到直线的距离为,当圆心到直线的距离大于半径时,,且.综上,实数m的取值范围为.故答案为:14、【解析】分别令和,再将两个等式相加可求得的值.【详解】令,则;令,则.上述两式相加得故答案为:.【点睛】本题考查偶数项系数和的计算,一般令和,通过对等式相加减求得,考查计算能力,属于中等题.15、【解析】根据空间向量可得,结合计算即可.【详解】由题意知,,所以,解得.故答案:316、【解析】设该圆锥的底面半径为r,由圆锥的体积V=πr2h,可解得r的值,再由勾股定理求得圆锥的母线长l,而侧面积S=πrl,代入数据即可得解【详解】设该圆锥的底面半径为r,圆锥的体积V=πr2h=πr2×4=12π,解得r=3∴圆锥母线长l==5,∴侧面积S=πrl=15π故答案为:15π【点睛】本题考查圆锥的侧面积和体积的计算,理解圆锥的结构特征是解题的关键,考查学生的空间立体感和运算能力,属于基础题三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】(1)根据等差数列的通项公式求解;(2)运用裂项相消法求数列的和.详解】(1)∵,∴,即∴(2)由(1)可得,即.利用累加法得【点睛】本题考查等差数列的通项公式和裂项相消法求数列的和.18、(1)81种;(2)24种;(3)64种【解析】(1)利用分步计数原理可求报名方法总数.(2)利用分步计数原理可求报名方法总数.(3)利用分步计数原理可求报名方法总数.【详解】(1)要完成的是“4名同学每人从三个项目中选一项报名”这件事,因为每人必报一项,4人都报完才算完成,所以按人分步,且分为四步,又每人可在三项中选一项,选法为3种,所以共有(种)报名方法(2)每项限报一人,且每人至多报一项,因此100m项目有4种选法,400m项目有3种选法,800m项目只有2种选法.根据分步乘法计数原理,可得不同的报名方法有(种)(3)要完成的是“三个项目冠军的获取”这件事,因为每项冠军只能有一人获得,三项冠军都有得主,这件事才算完成,所以应以“确定三项冠军得主”为线索进行分步,而每项冠军的得主有4种可能结果,所以共有(种)可能的结果19、(1)证明见解析,;(2).【解析】(1)利用给定的递推公式变形,再利用等比数列定义直接判断并求出通项得解.(2)由(1)的结论求出,再利用裂项相消法计算作答.【小问1详解】数列{}中,,则,由得:,所以数列是首项为3,公比为2的等比数列,则有,即,所以数列{}的通项公式是.【小问2详解】由(1)知,,,则,所以数列{}的前n项和.20、(1);(2);810公斤;(3).【解析】(1)根据散点图的变化趋势,结合给定模型的性质直接判断适合的模型即可.(2)将(1)中模型取对得,结合题设及表格数据求及参数,进而可得参数c,即可确定回归方程,进而估计时粮食亩产量y的值.(3)由题设知,结合特殊区间的概率值及正态分布的对称性求即可.【小问1详解】根据散点图,呈现非线性的变化趋势,故更适合作为关于的回归方程类型.【小问2详解】对两边取对数,得,即,由表中数据得:,,,则,∴关于的回归方程为,当时,,∴当化肥施用量为27公斤时,粮食亩产量约为810公斤.小问3详解】依题意,,则有,∴,则,∴这种化肥的有效率超过58%的概率约为.21、(1)(2)【解析】(1)利用正弦定理化简,通过两角和与差的三角函数求出,即可得到结果(2)利用三角形的面积求出,通过由余弦定理求解即可【详解】解:(1)因为bcosA=(2c+a)cos(π﹣B),所以sinBcosA=(﹣2sinC﹣sinA)cosB所以sin(A+B)=﹣2sinCcosB∴cosB=﹣∴B=(2)由=得ac=4由余弦定理得b2=a2+c2+ac=(a+c)2+ac=16∴a+c=2【点睛】本题主要考查了利用正、余弦定理及三角形的面积公式解三角形问题,其中在解有关三角形的题目时,要有意识地考虑用哪个定理更合适,或是两个定理都要用.一般地,如果式子中含有角的余弦或边的二次式时,要考虑用余弦定理;如果式子中含有角的正弦或边的一次式时,则考虑用正弦定理;以上特征都不明显时,则要考虑两个定理都有可能用到22、(Ⅰ)答案见解析;(Ⅱ).【解析】(Ⅰ)的定义域为,,分和两种情况解不等式和即可得单调递增区间和单调递减区间;(Ⅱ)由题意可得对于恒成立,分离可得,令,只需,利用导数求最小值即可求解.【详解】(Ⅰ)函数的定义域为,当时,对于恒成立,此时函数在上单调递增;当时,由可得;由可得;此时在上单调递减,在上单调递增;综上所述:当时,函数
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度投影仪产品研发与销售合作协议3篇
- 二零二五年度加油站油品销售代理合同3篇
- 可行性研究报告方案评审
- 2025年度版权购买合同:版权出售方与购买方就版权交易价格和授权范围的约定3篇
- 2024年置换买卖合同:古董与字画3篇
- 四年级数学(上)计算题专项练习及答案
- 2024年版权分割合同协议
- 2025年度港口码头停车场特许经营合同3篇
- 2025年度某大型连锁超市商品采购合同3篇
- 2021-2026年中国热转印纸市场发展前景预测及投资战略咨询报告
- 2025年云南昆明经济技术开发区投资开发(集团)有限公司招聘笔试参考题库附带答案详解
- HSE基础知识培训
- 安徽省蚌埠市2023-2024学年高一上学期期末考试 地理 含答案
- GB/T 5483-2024天然石膏
- 2024年度托管班二人合伙协议书3篇
- 山东中医药大学中西医临床(专升本)学士学位考试复习题
- 2024-2025学年九年级语文上册部编版期末综合模拟试卷(含答案)
- 乡村振兴暨干部素质提升培训班学习心得体会
- IATF16949:2024标准质量手册
- 饲料加工混凝土施工合同
- 会议会务服务投标方案投标文件(技术方案)
评论
0/150
提交评论