2024届江苏省无锡市江阴市南菁高中高二数学第一学期期末检测模拟试题含解析_第1页
2024届江苏省无锡市江阴市南菁高中高二数学第一学期期末检测模拟试题含解析_第2页
2024届江苏省无锡市江阴市南菁高中高二数学第一学期期末检测模拟试题含解析_第3页
2024届江苏省无锡市江阴市南菁高中高二数学第一学期期末检测模拟试题含解析_第4页
2024届江苏省无锡市江阴市南菁高中高二数学第一学期期末检测模拟试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届江苏省无锡市江阴市南菁高中高二数学第一学期期末检测模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设正数数列的前项和为,数列的前项积为,且,则()A. B.C. D.2.已知抛物线:,焦点为,若过的直线交抛物线于、两点,、到抛物线准线的距离分别为3、7,则长为A.3 B.4C.7 D.103.某市2016年至2020年新能源汽车年销量y(单位:百台)与年份代号x的数据如下表:年份20162017201820192020年份代号x01234年销量y1015m3035若根据表中的数据用最小二乘法求得y关于x的回归直线方程为,则表中m的值为()A.22 B.20C.30 D.32.54.已知点O为坐标原点,抛物线C:的焦点为F,点T在抛物线C的准线上,线段FT与抛物线C的交点为W,,则()A.1 B.C. D.5.是首项和公差均为3的等差数列,如果,则n等于()A.671 B.672C.673 D.6746.已知函数的图象如图所示,则其导函数的图象可能是()A. B.C. D.7.某中学初中部共有110名教师,高中部共有150名教师,其性别比例如图所示,则该校男教师的人数为()A.167 B.137C.123 D.1138.椭圆的焦点坐标为()A.和 B.和C.和 D.和9.某老师希望调查全校学生平均每天的自习时间.该教师调查了60位学生,发现他们每天的平均自习时间是3.5小时.这里的总体是()A.杨高的全校学生;B.杨高的全校学生的平均每天自习时间;C.所调查的60名学生;D.所调查的60名学生的平均每天自习时间.10.直线与圆的位置关系是()A.相切 B.相交C.相离 D.不确定11.已知点,在双曲线上,线段的中点,则()A. B.C. D.12.与空间向量共线的一个向量的坐标是()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.记为等差数列的前n项和.若,则__________14.命题“若,则”的否命题为______15.已知函数(1)求函数的最小正周期和单调递增区间;(2)在锐角三角形中,角,,所对的边分别为,,,若,,,求的面积16.已知抛物线C:的焦点为F,准线为l,过点F斜率为的直线与抛物线C交于点M(M在x轴的上方),过M作于点N,连接NF交抛物线C于点Q,则__________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知动点M到点F(0,)的距离与它到直线的距离相等(1)求动点M的轨迹C的方程;(2)过点P(,-1)作C的两条切线PA,PB,切点分别为A,B,求直线AB的方程18.(12分)已知圆C过点,,它与x轴的交点为,,与y轴的交点为,,且.(1)求圆C的标准方程;(2)若,直线,从点A发出的一条光线经直线l反射后与圆C有交点,求反射光线所在的直线的斜率的取值范围.19.(12分)在数列中,,,(1)设,证明:数列是等差数列;(2)求数列的前项和.20.(12分)如图,中,且,将沿中位线EF折起,使得,连结AB,AC,M为AC的中点.(1)证明:平面ABC;(2)求二面角的余弦值.21.(12分)已知椭圆的右顶点为,上顶点为.离心率为,.(1)求椭圆的标准方程;(2)若,是椭圆上异于长轴端点的两点(斜率不为0),已知直线,且,垂足为,垂足为,若,且的面积是面积的5倍,求面积的最大值.22.(10分)已知三角形的三个顶点是,,(1)求边上的中线所在直线的方程;(2)求边上的高所在直线的方程

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】当可求得;当时,可证得数列为等差数列,利用等差数列通项公式可推导得到,由求得后,利用可求得结果.【详解】当时,,解得:;当时,由得:,即,,数列是以为首项,为公差的等差数列,,解得:,,经检验:满足,,故选:B.2、D【解析】利用抛物线的定义,把的长转化为点到准线的距离的和得解【详解】解:抛物线:,焦点为,过的直线交抛物线于、两点,、到抛物线准线的距离分别为3、7,则故选D【点睛】本题考查抛物线定义的应用,意在考查学生对该知识的理解掌握水平和分析推理能力.3、B【解析】求出样本中心的横坐标,代入回归直线方程,求出样本中心的纵坐标,然后求解即可【详解】因为,代入回归直线方程为,所以,,于是得,解得故选:B4、B【解析】根据平面向量共线的性质,结合抛物线的定义进行求解即可.【详解】由已知得:,该抛物线的准线方程为:,所以设,因为,所以,由抛物线的定义可知:,故选:B5、D【解析】根据题意,求得数列的通项公式,代入数据,即可得答案.【详解】因为数列为等差数列,所以,令,解得.故选:D6、A【解析】根据原函数图象判断出函数单调性,由此判断导函数的图象.【详解】原函数在上从左向右有增、减、增,个单调区间;在上递减.所以导函数在上从左向右应为:正、负、正;在上应为负.所以A选项符合.故选:A7、C【解析】根据图形分别求出初中部和高中部男教师的人数,最后相加即可.【详解】初中部男教师的人数为110×(170%)=33;高中部男教师的人数为150×60%=90,∴该校男教师的人数为33+90=123.故选:C.8、D【解析】本题是焦点在x轴的椭圆,求出c,即可求得焦点坐标.【详解】,可得焦点坐标为和.故选:D9、B【解析】由总体的概念可得答案.【详解】某老师希望调查全校学生平均每天的自习时间,该教师调查了60位学生,发现他们每天的平均自习时间是3.5小时,这里的总体是全校学生平均每天的自习时间.故选:B.10、B【解析】直线恒过定点,而此点在圆的内部,故可得直线与圆的位置关系.【详解】直线恒过定点,而,故点在圆的内部,故直线与圆的位置关系为相交,故选:B.11、D【解析】先根据中点弦定理求出直线的斜率,然后求出直线的方程,联立后利用弦长公式求解的长.【详解】设,,则可得方程组:,两式相减得:,即,其中因为的中点为,故,故,即直线的斜率为,故直线的方程为:,联立,解得:,由韦达定理得:,,则故选:D12、C【解析】根据空间向量共线的坐标表示即可得出结果.【详解】.故选:C.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】因为是等差数列,根据已知条件,求出公差,根据等差数列前项和,即可求得答案.【详解】是等差数列,且,设等差数列的公差根据等差数列通项公式:可得即:整理可得:解得:根据等差数列前项和公式:可得:.故答案:.【点睛】本题主要考查了求等差数列的前项和,解题关键是掌握等差数列的前项和公式,考查了分析能力和计算能力,属于基础题.14、若,则【解析】否命题是对命题的条件和结论同时否定,同时否定和即可.命题“若,则”的否命题为:若,则考点:四种命题.15、(1)最小正周期,,;(2)【解析】(1)根据降幂公式、辅助角公式化简函数的解析式,再利用正弦型函数的最小正周期公式、单调性进行求解即可;(2)根据特殊角的三角函数值,结合三角形面积公式进行求解即可.【详解】(1),所以的最小正周期令,,解得,,所以的单调递增区间为,(2)因为,所以,即,又,所以,所以或,或,当时,,不符合题意,舍去;当时,,符合题意,所以,,,,此时为等腰三角形,所以,所以,即的面积为16、【解析】由题意画出图形,写出直线的方程,与抛物线方程联立求出的坐标,进一步求出的坐标,求得即可求解【详解】解:如图,由抛物线,得,,则,与抛物线联立得,解得、,,,,,为等边三角形,,过作轴的垂线交轴于,设,,,,,在抛物线上,,解得,,,,则,故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)根据抛物线的定义或者直接列式化简即可求出;(2)方法一:设切线的方程为:,与抛物线方程联立,由即可求出的值,从而得出点的坐标,即可求出直线方程【小问1详解】设M(x,y),则解得.所以该抛物线的方程为【小问2详解】[方法一]:依题意,切线的斜率存在,设切线的方程为:,与抛物线方程联立,得,令,得或.从而或,解得或,所以切点A(-1,),B(2,2),直线AB的斜率为,所以直线AB的方程为,整理得.[方法二]:由可得,所以,设切点为(),则切线的斜率,又切线过点P(,-1),所以,整理得,解得或,所以切点的坐标为A(-1,),B(2,2),所以直线AB的斜率为,所以直线AB的方程为,整理得18、(1);(2).【解析】(1)设圆C的一般式方程为:,然后根据题意列出方程,解出D,E,F的值即可得到圆的方程;(2)先求出点关于直线l的对称点,设反射光线所在直线方程为,利用直线和圆的位置关系列出不等式解出k的取值范围即可.【详解】(1)设圆C的一般式方程为:,令,得,所以,令,得,所以,所以有,所以,①又圆C过点,,所以有,②,③由①②③得,,,所以圆C的一般式方程为,标准方程为;(2)设关于的对称点,所以有,解之得,故点,∴反射光线所在直线过点,设反射光线所在直线方程为:,所以有,所以反射光线所在的直线斜率取值范围为.【点睛】本题考查圆的方程的求法,直线和圆的位置关系的应用,考查逻辑思维能力和运算求解能力,属于常考题.19、(1)略(2)【解析】(1)题中条件,而要证明的是数列是等差数列,因此需将条件中所给的的递推公式转化为的递推公式:,从而,,进而得证;(2)由(1)可得,,因此数列的通项公式可以看成一个等差数列与等比数列的乘积,故可考虑采用错位相减法求其前项和,即有:①,①得:②,②-①得.试题解析:(1)∵,,又∵,∴,,∴则是为首项为公差的等差数列;由(1)得,∴,∴①,①得:②,②-①得.考点:1.数列的通项公式;2.错位相减法求数列的和.20、(1)证明见解析(2)【解析】(1)由勾股定理以及等腰三角形的性质得出,,再由线面垂直的判定证明即可;(2)以点为坐标原点,建立空间直角坐标系,由向量法得出面面角.【小问1详解】设,则,,平面平面,连接,,,,,即又,平面ABC【小问2详解】,以点为坐标原点,建立如下图所示的空间直角坐标系设平面的法向量为,平面的法向量为,令,则同理可得,又二面角为钝角,故二面角的余弦值为.21、(1)(2)面积的最大值为【解析】(1)由离心率为,,得,解得,,,进而可得答案(2)设直线的方程为,,,,,联立直线与椭圆的方程,结合韦达定理可得,,由弦长公式可得,点到直线的距离,则,,由的面积是面积的5倍,解得,再计算的最大值,即可【小问1详解】解:因为离心率为,,所以,解得,,,所以【小问2详解】解:设直线的方程为,,,,,联立,得,所以,,所以,点到直线的距离,所以,,因为的面积是面积的5倍,所以所以或,又因为,是椭

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论