版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届贵州省百校大联考高二数学第一学期期末质量跟踪监视模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知直线是圆的对称轴,过点A作圆C的一条切线,切点为B,则|AB|=()A.1 B.2C.4 D.82.某地政府为落实疫情防控常态化,不定时从当地780名公务员中,采用系统抽样的方法抽取30人做核酸检测.把这批公务员按001到780进行编号,若054号被抽中,则下列编号也被抽中的是()A.076 B.104C.390 D.5223.瑞士数学家欧拉1765年在其所著的《三角形的几何学》一书中提出:任意三角形的外心、重心、垂心在同一条直线上,后人称这条直线为欧拉线.已知的顶点,,其欧拉线方程为,则顶点的坐标可以是()A. B.C. D.4.设为抛物线焦点,直线,点为上任意一点,过点作于,则()A.3 B.4C.2 D.不能确定5.已知复数满足(其中为虚数单位),则复数的虚部为()A. B.C. D.6.下列函数求导错误的是()A.B.C.D.7.已知实数,满足不等式组,若,则的最小值为()A. B.C. D.8.如图,正四棱柱ABCD—A1B1C1D1中,AA1=2AB,则异面直线A1B与AD1所成角的余弦值为A. B.C. D.9.已知p:,那么p的一个充分不必要条件是()A. B.C. D.10.定义在区间上的函数满足:对恒成立,其中为的导函数,则A.B.C.D.11.将正整数1,2,3,4,…按如图所示的方式排成三角形数组,则第19行从左往右数第5个数是()A.381 B.361C.329 D.40012.已知是虚数单位,若,则复数z的虚部为()A.3 B.-3iC.-3 D.3i二、填空题:本题共4小题,每小题5分,共20分。13.曲线在处的切线方程为______.14.《九章算术》是人类科学史上应用数学的最早巅峰,书中有这样一道题:“今有大夫、不更,簪裹、上造、公士,凡五人,共猎得五只鹿,欲以爵次分之,问各得几何?”其译文是“现在有从高到低依次为大夫,不更,簪裹,上造、公士的五个不同爵次的官员,共猎得五只鹿,要按爵次商低分(即根据爵次高低分配得到的猎物数依次成等差数列),向各得多少鹿?”已知上造分得只鹿,则不更所得的鹿数为_______只15.一条直线经过,并且倾斜角是直线的倾斜角的2倍,则直线的方程为__________16.平面内n条直线两两相交,且任意三条直线不过同一点,将其交点个数记为,若规定,则,,_________,_________,(用含n的式子表示)三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知椭圆的离心率为,点在椭圆C上.(1)求椭圆C的标准方程;(2)已知直线与椭圆C交于P,Q两点,点M是线段PQ的中点,直线过点M,且与直线l垂直.记直线与y轴的交点为N,求的取值范围.18.(12分)已知a,b,c分别是△ABC的三个内角A,B,C所对的边,且.(1)求C;(2)若D是BC的中点,,,求AB的长.19.(12分)若等比数列的各项为正,前项和为,且,.(1)求数列的通项公式;(2)若是以1为首项,1为公差的等差数列,求数列的前项和.20.(12分)已知,,分别为三个内角,,的对边,.(Ⅰ)求;(Ⅱ)若=2,的面积为,求,.21.(12分)已知:(常数);:代数式有意义(1)若,求使“”为真命题的实数的取值范围;(2)若是成立的充分不必要条件,求实数的取值范围22.(10分)如图,在四棱锥中,四边形ABCD为正方形,PA⊥底面ABCD,,M,N分别为AB和PC的中点(1)求证:MN//平面PAD;(2)求平面MND与平面PAD的夹角的余弦值
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】首先将圆心坐标代入直线方程求出参数a,求得点A的坐标,由切线与圆的位置关系构造直角三角形从而求得.【详解】圆即,圆心为,半径为r=3,由题意可知过圆的圆心,则,解得,点A坐标为,,切点为B则,故选:C【点睛】本题考查直线与圆的位置关系,属于基础题.2、D【解析】根据题意,求得组数与抽中编号的对应关系,即可判断和选择.【详解】从780名公务员中,采用系统抽样的方法抽取30人做核酸检测,故需要分为组,每组人,设第组抽中的编号为,设,由题可知:,故可得,故可得.当时,.故选:.3、C【解析】设出点C坐标,求出的重心并代入欧拉线方程,验证并排除部分选项,余下选项再由外心、垂心验证判断作答.【详解】设顶点的坐标为,则的重心坐标为,依题意,,整理得:,对于A,当时,,不满足题意,排除A;对于D,当时,,不满足题意,排除D;对于B,当时,,对于C,当时,,直线AB的斜率,线段AB中点,线段AB中垂线方程:,即,由解得:,于是得的外心,若点,则直线BC的斜率,线段BC中点,该点与点M确定直线斜率为,显然,即点M不在线段BC的中垂线上,不满足题意,排除B;若点,则直线BC的斜率,线段BC中点,线段BC中垂线方程为:,即,由解得,即点为的外心,并且在直线上,边AB上的高所在直线:,即,边BC上的高所在直线:,即,由解得:,则的垂心,此时有,即的垂心在直线上,选项C满足题意.故选:C【点睛】结论点睛:的三顶点,则的重心为.4、A【解析】由抛物线方程求出准线方程,由题意可得,由抛物线的定义可得,即可求解.【详解】由可得,准线为,设,由抛物线的定义可得,因为过点作于,可得,所以,故选:A.5、A【解析】由题目条件可得,即,然后利用复数的运算法则化简.【详解】因为,所以,则故复数的虚部为.故选:A.【点睛】本题考查复数的相关概念及复数的乘除运算,按照复数的运算法则化简计算即可,较简单.6、C【解析】每一个选项根据求导公式及法则来运算即可判断.【详解】对于A,,正确;对于B,,正确;对于C,,不正确;对于D,,正确.故选:C7、B【解析】作出不等式组对应的平面区域,然后根据线性规划的几何意义求得答案.【详解】作出不等式组所对应的可行域如图三角形阴影部分,平行移动直线直线,可以看到当移动过点A时,在y轴上的截距最小,联立,解得,当且仅当动直线即过点时,取得最小值为,故选:B8、D【解析】设AA1=2AB=2,因为,所以异面直线A1B与AD1所成角,,故选D.9、C【解析】按照充分不必要条件依次判断4个选项即可.【详解】A选项:,错误;B选项:,错误;C选项:,,正确;D选项:,错误.故选:C.10、D【解析】分别构造函数,,,,利用导数研究其单调性即可得出【详解】令,,,,恒成立,,,,函数在上单调递增,,令,,,,恒成立,,函数在上单调递减,,.综上可得:,故选:D【点睛】函数的性质是高考的重点内容,本题考查的是利用函数的单调性比较大小的问题,通过题目中给定的不等式,分别构造两个不同的函数求导判出单调性从而比较函数值得大小关系.在讨论函数的性质时,必须坚持定义域优先的原则.对于函数实际应用问题,注意挖掘隐含在实际中的条件,避免忽略实际意义对定义域的影响11、C【解析】观察规律可知,从第一行起,每一行最后一个数是连续的完全平方数,据此容易得出答案.【详解】由图中数字排列规律可知:第1行从左往右最后1个数是,第2行从左往右最后1个数是,第3行从左往右最后1个数是,……第18行从左往右最后1个数为,第19行从左往右第5个数是故选:C.12、C【解析】由复数的除法运算可得答案.【详解】由题得,所以复数z的虚部为-3.故选:C.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】先求出函数的导函数,然后结合导数的几何意义求解即可.【详解】解:由,得,则,即当时,,所以切线方程为:,故答案为:.【点睛】本题考查了曲线在某点处的切线方程的求法,属基础题.14、【解析】由题意分析,利用等差数列基本量代换列方程组即可求解.【详解】记大夫,不更,簪裹,上造、公士得到的猎物数为等差数列,公差为d,由题意可得,即,解得,∴故答案为:15、【解析】先求出直线倾斜角,从而可求得直线的倾斜角,则可求出直线的斜率,进而可求出直线的方程【详解】因为直线的斜率为,所以直线的倾斜角为,所以直线的倾斜角为,所以直线的斜率为,因为直线经过,所以直线的方程为,即,故答案为:16、①.6;②..【解析】利用第条直线与前条直线相交有个交点得出与的关系后可得结论【详解】第4条直线与前三条直线有3个交点,因此,同理,由此得到第条直线与前条直线相交有个交点,所以,即所以故答案为:6;三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)求出后可得椭圆的方程.(2)联立直线的方程和椭圆方程,消去后利用韦达定理可用表示,利用换元法和二次函数的性质可求的取值范围.小问1详解】由题意可得,解得,.故椭圆C的标准方程为.【小问2详解】设,,.联立,整理得,则,解得,从而,.因为M是线段PQ的中点,所以,则,故.直线的方程为,即.令,得,则,所以.设,则,故.因为,所以,所以.18、(1)(2)【解析】(1)根据正弦定理化边为角,结合三角变换可求答案;(2)根据余弦定理先求,再用余弦定理求解.【小问1详解】∵,∴由正弦定理可得,∴,∴.∵,∴,即.∵,∴.【小问2详解】设,则,即,解得或(舍去),∴.∵,∴.19、(1)(2)【解析】(1)设公比为,则由已知可得,求出公比,再求出首项,从而可求出数列的通项公式;(2)由已知可得,而,所以,然后利用错位相减法可求得结果【小问1详解】设各项为正的等比数列的公比为,,,则,,,即,解得或(舍去),所以,所以数列的通项公式为.【小问2详解】因为是以1为首项,1为公差的等差数列,所以.由(1)知,所以.所以①在①的等式两边同乘以,得②由①②等式两边相减,得,所以数列的前项和.20、(1)(2)=2【解析】(Ⅰ)由及正弦定理得由于,所以,又,故.(Ⅱ)的面积==,故=4,而故=8,解得=221、(1);(2).【解析】(1)若,分别求出,成立的等价条件,利用为真,求实数的取值范围;(2)利用是的充分不必要条件,建立不等式关系即可求实数的取值范围【详解】:等价于:即;:代数式有意义等价于:,即,(1)时,即为,若“”为真命题,则,得:故时,使“”为真命题的实数的取值范围是,,(2)记集合,,若是成立的充分不必要条件,则是的真子集,因此:,,故实数的取值范围是22、(1)证明见解析;(2).【解析】(1)在平面中构造与平行的直线,利用线线平行推证线面平行即可;(2)以为坐标原点建立空间直角坐标系,分别求得两个平
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 业务员雇佣合同2篇
- 正规借款合同三个范本(3篇)
- 2024年度草坪种植基地建设与运营合同
- 2024年度技术开发合同-共同研发人工智能技术2024
- 二零二四年度音乐节活动板房搭建及拆除合同
- 2024版采购供应合同协议书2篇
- 二零二四年度企业安全生产管理合同
- 2024年度电梯设备销售与代理合同
- 个人代理合同范本
- 邛崃保洁合同范本
- 《ST欧浦大股东掏空行为案例研究》
- 医院改扩建工程可行性研究报告(论证后)
- 【初中生物】第三章微生物检测试题 2024-2025学年人教版生物七年级上册
- 六年级数学上册 (基础版)第4章《比》单元培优拔高测评试题(学生版)(人教版)
- 2024水样采集与保存方法
- 2025届高考语文一轮复习:二元思辨类作文思辨关系高阶思维
- 糖尿病患者体重管理专家共识(2024年版)解读
- 《中国慢性阻塞性肺疾病基层诊疗与管理指南(2024年)》解读
- 4D厨房区域区间管理责任卡
- HSK标准教程5下-课件-L7
- GB/T 15048-1994硬质泡沫塑料压缩蠕变试验方法
评论
0/150
提交评论