2018高考数学文北师大版大一轮复习课件2b教师版第四章三角函数解三角形16份打包_第1页
2018高考数学文北师大版大一轮复习课件2b教师版第四章三角函数解三角形16份打包_第2页
2018高考数学文北师大版大一轮复习课件2b教师版第四章三角函数解三角形16份打包_第3页
2018高考数学文北师大版大一轮复习课件2b教师版第四章三角函数解三角形16份打包_第4页
2018高考数学文北师大版大一轮复习课件2b教师版第四章三角函数解三角形16份打包_第5页
已阅读5页,还剩60页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

§4.4

函数y=Asin(ωx+φ)的图像及应用基础知识自主学习课时作业题型分类深度剖析内容索引基础知识自主学习1.y=Asin(ωx+φ)的有关概念知识梳理y=Asin(ωx+φ)(A>0,ω>0),x∈R振幅周期频率相位初相AT=___f=

=___

ωx+φφ2.用五点法画y=Asin(ωx+φ)一个周期内的简图时,要找五个特征点如下表所示:x_________________________ωx+φ____________________y=Asin(ωx+φ)0A0-A00π2π几何画板展示3.函数y=sinx的图像经变换得到y=Asin(ωx+φ)(A>0,ω>0)的图像的步骤如下:ω1.由y=sinωx到y=sin(ωx+φ)(ω>0,φ>0)的变换:向左平移

个单位长度而非φ个单位长度.2.函数y=Asin(ωx+φ)的对称轴由ωx+φ=kπ+

,k∈Z确定;对称中心由ωx+φ=kπ,k∈Z确定其横坐标.知识拓展判断下列结论是否正确(请在括号中打“√”或“×”)思考辨析√(2)将函数y=sinωx的图像向右平移φ(φ>0)个单位长度,得到函数y=sin(ωx-φ)的图像.(

)(3)利用图像变换作图时“先平移,后伸缩”与“先伸缩,后平移”中平移的长度一致.(

)(4)函数y=Asin(ωx+φ)的最小正周期为T=

.(

)×××(5)把y=sinx的图像上各点纵坐标不变,横坐标缩短为原来的

,所得图像对应的函数解析式为y=sinx.(

)(6)若函数y=Acos(ωx+φ)的最小正周期为T,则函数图像的两个相邻对称中心之间的距离为

.(

)×√

考点自测答案解析

2.(2015·山东)要得到函数y=

的图像,只需将函数y=sin4x的图像答案解析

3.(2016·青岛模拟)将函数y=sinx的图像上所有的点向右平行移动

个单位长度,再把所得各点的横坐标伸长到原来的2倍(纵坐标不变),所得图像的函数解析式是答案解析y=sinx

y=sin(x-

)

解析答案5.若将函数f(x)=sin(2x+

)的图像向右平移φ个单位,所得图像关于y轴对称,则φ的最小正值是________.答案解析题型分类深度剖析题型一函数y=Asin(ωx+φ)的图像及变换(1)请将上表数据补充完整,并直接写出函数f(x)的解析式;解答根据表中已知数据,解得A=5,ω=2,φ=

.数据补全如下表:(2)将y=f(x)图像上所有点向左平移θ(θ>0)个单位长度,得到y=g(x)的图像.若y=g(x)图像的一个对称中心为

,求θ的最小值.解答因为函数y=sinx图像的对称中心为(kπ,0),k∈Z.引申探究在本例(2)中,将f(x)图像上所有点向左平移

个单位长度,得到g(x)的图像,求g(x)的解析式,并写出g(x)图像的对称中心.解答因为y=sinx的对称中心为(kπ,0),k∈Z.思维升华(1)五点法作简图:用“五点法”作y=Asin(ωx+φ)的简图,主要是通过变量代换,设z=ωx+φ,由z取0,

,π,

,2π来求出相应的x,通过列表,计算得出五点坐标,描点后得出图像.(2)图像变换:由函数y=sinx的图像通过变换得到y=Asin(ωx+φ)的图像,有两种主要途径:“先平移后伸缩”与“先伸缩后平移”.跟踪训练1把函数y=sinx的图像上所有点的横坐标缩小到原来的一半,纵坐标保持不变,再把所得函数图像向左平移

个单位,得到的函数图像的解析式是

答案解析A.y=cos2x B.y=-sin2xC.y=sin(2x-

) D.y=sin(2x+

)由y=sinx图像上所有点的横坐标缩小到原来的一半,纵坐标保持不变,所得图像的解析式为y=sin2x,几何画板展示题型二由图像确定y=Asin(ωx+φ)的解析式例2已知函数f(x)=Asin(ωx+φ)(A>0,|φ|<,ω>0)的图像的一部分如图所示.(1)求f(x)的表达式;解答观察图像可知A=2且点(0,1)在图像上,又∵

是函数的一个零点且是图像递增穿过x轴形成的零点,(2)试写出f(x)的对称轴方程.解答思维升华求y=Asin(ωx+φ)+B(A>0,ω>0)解析式的步骤(3)求φ,常用方法如下:①代入法:把图像上的一个已知点代入(此时要注意该点在上升区间上还是在下降区间上)或把图像的最高点或最低点代入.②五点法:确定φ值时,往往以寻找“五点法”中的特殊点作为突破口.具体如下:“第一点”(即图像上升时与x轴的交点)为ωx+φ=0;“第二点”(即图像的最高点)为ωx+φ=

;“第三点”(即图像下降时与x轴的交点)为ωx+φ=π;“第四点”(即图像的最低点)为ωx+φ=

;“第五点”为ωx+φ=2π.

跟踪训练2

(2016·太原模拟)已知函数f(x)=sin(ωx+φ)(ω>0,|φ|<)的部分图像如图所示,则y=f(x+

)取得最小值时x的集合为答案解析∴ω=2,因此f(x)=sin(2x+φ),题型三三角函数图像性质的应用命题点1三角函数模型的应用例3

(2015·陕西)如图,某港口一天6时到18时的水深变化曲线近似满足函数

,据此函数可知,这段时间水深(单位:m)的最大值为

答案解析A.5 B.6 C.8 D.10由题干图易得ymin=k-3=2,则k=5.∴ymax=k+3=8.命题点2函数零点(方程根)问题答案解析(-2,-1)故m的取值范围是(-2,-1).引申探究例4中,若将“有两个不同的实数根”改成“有实根”,则m的取值范围是_______.答案解析[-2,1)∴-2≤m<1,∴m的取值范围是[-2,1).命题点3图像与性质的综合应用解答(1)求ω和φ的值;因为f(x)的图像上相邻两个最高点的距离为π,(2)当x∈[0,

]时,求函数y=f(x)的最大值和最小值.解答思维升华(1)三角函数模型的应用体现在两方面:一是已知函数模型求解数学问题;二是把实际问题抽象转化成数学问题,建立数学模型,再利用三角函数的有关知识解决问题.(2)方程根的个数可转化为两个函数图像的交点个数.(3)研究y=Asin(ωx+φ)的性质时可将ωx+φ视为一个整体,利用换元法和数形结合思想进行解题.答案解析画出函数的图像.

三角函数图像与性质的综合问题答题模板系列4(1)求f(x)的最小正周期;(2)若将f(x)的图像向右平移

个单位长度,得到函数g(x)的图像,求函数g(x)在区间[0,π]上的最大值和最小值.思维点拨规范解答答题模板(1)先将f(x)化成y=Asin(ωx+φ)的形式再求周期;(2)将f(x)解析式中的x换成x-

,得g(x),然后利用整体思想求最值.故函数g(x)在区间[0,π]上的最大值为2,最小值为-1. [12分]返回解决三角函数图像与性质的综合问题的一般步骤:第一步:(化简)将f(x)化为asinx+bcosx的形式;第四步:(反思)反思回顾,查看关键点、易错点和答题规范.返回课时作业1.为了得到函数y=cos(2x+

)的图像,可将函数y=sin2x的图像√答案解析12345678910111213A.-2或0 B.0或1 C.±1 D.±212345678910111213√答案解析所以b=-2或b=0.1234567891011121312345678910111213答案解析√12345678910111213答案解析√12345678910111213观察图像可知,A=1,T=π,∴ω=2,f(x)=sin(2x+φ).1234567891011121312345678910111213答案解析√12345678910111213√答案解析123456789101112131234567891011121312345678910111213答案解析8.(2016·长春模拟)设偶函数f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<π)的部分图像如图所示,△KLM为等腰直角三角形,∠KML=90°,KL=1,则f()的值为_____.答案解析123456789101112139.(2015·天津)已知函数f(x)=sinωx+cosωx(ω>0),x∈R.若函数f(x)在区间(-ω,ω)内单调递增,且函数y=f(x)的图像关于直线x=ω对称,则ω的值为____.答案解析因为f(

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论