人教版数学八年级上册 15.3 分式方程_第1页
人教版数学八年级上册 15.3 分式方程_第2页
人教版数学八年级上册 15.3 分式方程_第3页
人教版数学八年级上册 15.3 分式方程_第4页
人教版数学八年级上册 15.3 分式方程_第5页
已阅读5页,还剩2页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

15.3分式方程第1课时分式方程及其解法1.理解分式方程的意义;2.掌握解分式方程的基本思路和解法;3.理解解分式方程可能无解的原因,掌握解分式方程的验根方法.4.通过探索实际问题中的数量关系,体会分式方程的模型作用,在经历“实际问题——分式方程——整式方程”的过程,发展学生分析问题,解决问题的能力,渗透转化的数学思想,培养学生的应用意识.5.在活动中培养学生乐于探索、合作学习的习惯,培养学生努力寻找解决问题的进取心,体会数学的应用价值.【教学重点】解分式方程的基本思路和解法.【教学难点】理解解分式方程可能无解的原因,及增根的含义.一、情境导入,初步认识问题一艘轮船在静水中的最大航速为30千米/时,它沿江以最大航速顺流航行90千米所用的时间,与以最大航速逆流航行60千米所用时间相等,江水的流速为多少?【教学说明】让学生求出江水流速为v千米/时后,自主探究,获得方程.然后师生共同评析.教师讲课前,先让学生完成“自主预习”.思考(1)方程与以往学过的方程有什么不同之处?(2)什么叫分式方程?分式方程的特征是什么?(3)怎样解分式方程呢?【教学说明】教师提出问题后,学生自主探究,相互交流,得出相应结论.教师应关注学生的参与情况及解决问题的情形,适时予以点拨,最后师生共同评析.二、思考探究,获取新知分式方程:分母中含有未知数的方程叫做分式方程.解分式方程的基本思路是将分式方程运用去分母的方法化成为整式方程.如:解方程.解:在方程两边乘的最简公分母(30+v)(30-v),得90(30-v)=60(30+v).解得v=6.检验:将v=6代入方程,左边=5/2=右边,所以v=6是原分式方程的解.试一试解方程.思考上面两个分式方程中,为什么去分母后所得整式方程的解就是原分式方程的解,而去分母后所得整式方程的解却不是原分式方程的解呢?【教学说明】教师提出问题后,学生先独立解决问题,然后在小组中提出自己的看法并讨论.在学生讨论时,教师可参与交流,鼓励学生勇于探索、实践,解释产生这一现象的原因,并让学生明白解分式方程时一定要验根.【归纳结论】一般地,解分式方程时,去分母后所得整式方程的解有可能使原方程中分母为0,因此;解分式方程时必须检验.检验方法可以如下:将整式方程的解代入最简公分母,如果最简公分母的值不为0,则整式方程的解是原分式方程的解;如果使最简公分母为0,则整式方程的解不是原分式方程的解,它是原分式方程增根,原分式方程无解.三、典例精析,掌握新知例1解方程.解:方程两边同乘以x(x-3),得2x=3(x-3).解得x=9.检验:x=9时,x(x-3)=54≠0,∴x=9是原分式方程的解.例2解方程.解:方程两边同乘以(x-1)(x+2),得x(x+2)-(x-1)(x+2)=3化简,得x+2=3.解得x=1.检验:把x=1代入(x-1)(x+2)=0,x=1不是原分式方程的解,原分式方程无解.【教学说明】两例都可以让学生自主完成,教师巡视,注意学生的解题格式和解题过程,发现问题,及时点拨,使学生掌握解分式方程的方法.四、运用新知,深化理解解下列方程:【教学说明】学生独立完成,选三名同学上黑板解答,教师巡视,对有困难同学给予帮助,鼓励他们努力完成解答,然后全班同学评析三位上黑板同学的解答,吸取经验,总结问题,帮助自己完善认知.若有时间,教师可引导学生做教材P150练习以帮助学生熟练地解分式方程.【答案】(1)解:方程两边同时乘以x(x-6),得x-6=7x,解得,x=-1.检验:当x=-1时,x(x-6)≠0,x=-1是原分式方程的解.(2)解:方程两边同时乘以(x-1),得x=4+3(x-1),解得x=-.检验:当x=-时,x-1≠0.x=-是原分式方程的解.(3)方程可化简为:,两边同乘以x(x-2)(x+2),得3(x+2)+(x-2)=0,得x=-1.检验:当x=-1时,x(x-2)(x+2)≠0,x=-1是原分式方程的解.五、师生互动,课堂小结1.解分式方程的一般步骤是什么?2.解分式方程时为什么要检验,说说你的看法.1.布置作业:从教材“习题15.3”中选取.2.完成练习册中本课时的练习.在本课的教学过程中,应从这样的几个方面入手:(1)分式方程和整式方程的区别:分清楚分式方程必须满足的两个条件:①方程式里必须有分式,②分母中含有未知数.这两个条件是判断一个方程是否为分式方程的充要条件.同时,由于分母中含有未知数,所以将其转化为整式方程后求出的解就应使每一个分式有意义,否则,这个根就是原方程的增根.正是由于分式方程与整式方程的区别,在解分式方程时必须进行检验.(2)分式方程和整式方程的联系:分式方程通过方程两边都乘以最简公分母,约去分母,就可以转化为整式方程来解,教学时应充分渗透这种化归思想.(3)解分式方程时,如果分母是多项式时,应先写出将分母进行因式分解的步骤,从而让学生准确无误地找出最简公分母.另外,对分式方程可能产生增根的原因,要启发学生认真思考和讨论.第2课时用分式方程解决实际问题1.能构建分式方程解决实际应用问题.2.经历“实际问题——构建分式方程模型——解决实际应用问题”的过程,进一步体会数学建模思想,培养学生的数学应用意识,发展学生分析问题、解决问题的能力.3.在构建分式方程解决实际问题的过程中,体验数学的应用价值,提高数学学习兴趣.【教学重点】构建分式方程解决实际应用问题.【教学难点】依据实际问题构建分式方程模型.一、情境导入,初步认识问题解分式方程的一般步骤是怎样的?为什么解分式方程过程中一定要检验?【教学说明】让学生回顾分式方程的解法,为利用分式方程的实际应用问题作好准备.教师再解释分式方程必须检验的原因,加深印象.教师讲课前,先让学生完成“自主预习”.二、典例精析,掌握新知例1两个工程队共同参与一项筑路工程,甲队单独施工1个月完成总工程的13,这时增加了乙队,两队又共同工作了半个月,总工程全部完成.哪个队的施工速度快?【分析】由题意可知甲队单独施工1个月完成工程量是,如果能知道乙队单独施工1个月所完成的工程量,就可以比较两边的施工速度.因此可以设出乙队单独施工1个月完成的工程量为,进而列出方程为+(+)=1,解这个方程,求出未知数值后,经检验,得到问题的答案.解:设乙队单独施工1个月能完成总工程的.记总工程量为1,根据工程的实际进度,得++=1.方程两边乘6x,得2x+x+3=6x.解得x=1.检验:当x=1时,6x≠0.所以,原分式方程的解为x=1.由上可知,若乙队单独施工1个月可以完成全部任务,对比甲队1个月完成任务的,可知乙队的施工速度快.【教学说明】解答过程可由学生自己完成,注意给出分式方程的检验过程.例2某次列车平均提速vkm/h.用相同的时间,列车提速前行驶skm,提速后比提速前多行驶50km,提速前列车的平均速度为多少?【分析】对于题目中出现的字母v和s,我们都应把它当作已知数据.根据问题的需要,可说提速前的速度为x千米/时,则提速后速度为(x+v)千米/时,再利用相同时间内,提速前行驶s千米,提速后可行驶(s+50)千米,建立关于x的分式方程为,并予以求解及进行检验.在检验时可利用实际问题中s>0,v>0来进行判断即可得出结论.解:设提速前这次列车的平均速度为xkm/h,则提速前它行驶skm所用时间为sxh,提速后它行驶(s+50)km所用时间为h.根据行驶时间的等量关系,得.方程两边乘x(x+v),得s(x+v)=x(s+50).解得x=.检验:由v,s都是正数,得x=时x(x+v)≠0.所以,原分式方程的解为x=.答:提速前列车的平均速度为km/h.【教学说明】解答过程由学生自己完成,教师巡视,发现问题,及时沟通,让学生养成独立思考习惯,学会分析问题,解决问题.在评讲时教师应针对本节的实际背景下的s>0,v>0进行必要说明.三、运用新知,深化理解1.八年级学生去距学校10km的博物馆参观,一部分学生骑自行车先走,过了20min后,其余学生乘汽车出发,结果他们同时到达.已知汽车的速度是骑车学生速度的2倍,求骑车学生的速度.2.张明3h清点完一批图书的一半,李强加入清点加一半图书的工作,两人合作1.2h清点完另一半图书.如果李强单独清点这批图书需要几小时?3.甲、乙二人做某种机械零件.已知甲每小时比乙多做6个,甲做90个所用的时间与乙做60个所用的时间相等.求甲、乙每小时各做零件多少个.【教学说明】1、2题可由学生自主探究,获得结论,教师在巡视过程中,针对学生可能出现的问题及时点拨.而第3题教师应先予以分析,再引导学生依题意得到关于x的分式方程,从而得到问题的答案.四、师生互动,课堂小结本节课学习了

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论