2023-2024学年江苏省盐城市阜宁县高二数学第一学期期末联考模拟试题含解析_第1页
2023-2024学年江苏省盐城市阜宁县高二数学第一学期期末联考模拟试题含解析_第2页
2023-2024学年江苏省盐城市阜宁县高二数学第一学期期末联考模拟试题含解析_第3页
2023-2024学年江苏省盐城市阜宁县高二数学第一学期期末联考模拟试题含解析_第4页
2023-2024学年江苏省盐城市阜宁县高二数学第一学期期末联考模拟试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023-2024学年江苏省盐城市阜宁县高二数学第一学期期末联考模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.某考点配备的信号检测设备的监测范围是半径为100米的圆形区域,一名工作人员持手机以每分钟50米的速度从设备正东方向米的处出发,沿处西北方向走向位于设备正北方向的处,则这名工作人员被持续监测的时长为()A.1分钟 B.分钟C.2分钟 D.分钟2.过点且与抛物线只有一个公共点的直线有()A.1条 B.2条C.3条 D.0条3.双曲线实轴长为()A.1 B.C.2 D.4.在正方体中,分别为的中点,为侧面的中心,则异面直线与所成角的余弦值为()A. B.C. D.5.已知双曲线的对称轴为坐标轴,一条渐近线为,则双曲线的离心率为A.或 B.或C.或 D.或6.某三棱锥的三视图如图所示,则该三棱锥内切球的表面积为A.B.C.D.7.已知数列满足,在任意相邻两项与(k=1,2,…)之间插入个2,使它们和原数列的项构成一个新的数列.记为数列的前n项和,则的值为()A.162 B.163C.164 D.1658.二次方程的两根为2,,那么关于的不等式的解集为()A.或 B.或C. D.9.变量,之间的一组相关数据如表所示:若,之间的线性回归方程为,则的值为()45678.27.86.65.4A. B.C. D.10.设为数列的前n项和,,且满足,若,则()A.2 B.3C.4 D.511.经过点且与双曲线有共同渐近线的双曲线方程为()A. B.C. D.12.已知,命题“若,则,全为0”的否命题是()A.若,则,全不为0. B.若,不全为0,则.C.若,则,不全为0. D.若,则,全不为0.二、填空题:本题共4小题,每小题5分,共20分。13.总体由编号为01,02,…,30的30个个体组成.选取方法是从下面随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字,则选出来的第5个个体的编号为____________.66065747173407275017362523611665118918331119921970058102057864532345647614.已知,则曲线在点处的切线方程是______.15.若直线与双曲线的右支交于不同的两点,则的取值范围__________16.已知正项等比数列的前项和为,且,则_______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,在正四棱柱中,是上的点,满足为等边三角形.(1)求证:平面;(2)求点到平面的距离.18.(12分)已知圆C的圆心在直线上,且经过点和(1)求圆C的标准方程;(2)若过点的直线l与圆C交于A,B两点,且,求直线l的方程19.(12分)中,内角、、所对的边为、、,.(1)求角的大小;(2)若、、成等差数列,且,求边长的值.20.(12分)在数列中,,,记.(1)求证:数列为等差数列,并求出数列的通项公式;(2)试判断数列的增减性,并说明理由21.(12分)某外语学校的一个社团中有7名同学,其中2人只会法语;2人只会英语,3人既会法语又会英语,现选派3人到法国的学校交流访问(1)在选派的3人中恰有2人会法语的概率;(2)在选派的3人中既会法语又会英语的人数X的分布列和数学期望22.(10分)在数列中,,,(1)设,证明:数列是等差数列;(2)求数列的前项和.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】以设备的位置为坐标原点,其正东方向为轴正方向,正北方向为轴正方向建立平面直角坐标系,求得直线和圆的方程,利用点到直线的距离公式和圆的弦长公式,求得的长,进而求得持续监测的时长.【详解】以设备的位置为坐标原点,其正东方向为轴正方向,正北方向为轴正方向建立平面直角坐标系,如图所示,则,,可得,圆记从处开始被监测,到处监测结束,因为到的距离为米,所以米,故监测时长为分钟故选:C.2、B【解析】过的直线的斜率存在和不存在两种情况分别讨论即可得出答案.【详解】易知过点,且斜率不存在的直线为,满足与抛物线只有一个公共点.当直线的斜率存在时,设直线方程为,与联立得,当时,方程有一个解,即直线与扰物线只有一个公共点.故满足题意的直线有2条.故选:B3、B【解析】由双曲线的标准方程可求出,即可求双曲线的实轴长.【详解】由可得:,,即,实轴长,故选:B4、A【解析】建立空间直角坐标系,用空间向量求解异面直线夹角的余弦值.【详解】如图,以D为坐标原点,DA所在直线为x轴,DC所在直线为y轴,所在直线为z轴建立空间直角坐标系,设正方体棱长为2,则,,,,则,,设异面直线与所成角为(),则.故选:A5、B【解析】分双曲线的焦点在轴上和在轴上两种情况讨论,求出的值,利用可求得双曲线的离心率的值.【详解】若焦点在轴上,则有,则双曲线的离心率为;若焦点在轴上,则有,则,则双曲线的离心率为.综上所述,双曲线的离心率为或.故选:B.【点睛】本题考查双曲线离心率的求解,在双曲线的焦点位置不确定的情况下,要对双曲线的焦点位置进行分类讨论,考查计算能力,属于基础题.6、A【解析】由三视图可知该几何体是一个三棱锥,根据等积法求出几何体内切球的半径,再计算内切球的表面积【详解】解:由三视图知该几何体是一个三棱锥,放入棱长为2的正方体中,如图所示:设三棱锥内切球的半径为,则由等体积法得,解得,所以该三棱锥内切球的表面积为故选:A【点睛】本题考查了由三视图求三棱锥内切球表面积的应用问题,属于中档题7、C【解析】确定数列的前70项含有的前6项和64个2,从而求出前70项和.【详解】,其中之间插入2个2,之间插入4个2,之间插入8个2,之间插入16个2,之间插入32个2,之间插入64个2,由于,,故数列的前70项含有的前6项和64个2,故故选:C8、B【解析】根据,确定二次函数的图象开口方向,再由二次方程的两根为2,,写出不等式的解集.【详解】因为二次方程的两根为2,,又二次函数的图象开口向上,所以不等式的解集为或,故选:B9、C【解析】本题先求样本点中心,再利用线性回归方程过样本点中心直接求解即可.【详解】解:,,所以样本点中心:,线性回归方程过样本点中心,则解得:,故选:C【点睛】本题考查线性回归方程过样本点中心,是简单题.10、B【解析】由已知条件可得数列为首项为2,公差为2的等差数列,然后根据结合等差数列的求和公式可求得答案【详解】在等式中,令,可得,所以数列为首项为2,公差为2的等差数列,因为,所以,化简得,,解得或(舍去),故选:B11、C【解析】共渐近线的双曲线方程,设,把点代入方程解得参数即可.【详解】设,把点代入方程解得参数,所以化简得方程故选:C.12、C【解析】根据四种命题的关系求解.【详解】因为否命题是否定原命题的条件和结论,所以命题“若,则,全为0”的否命题是:若,则,不全为0,故选:C二、填空题:本题共4小题,每小题5分,共20分。13、23【解析】根据随机表,由编号规则及读表位置列举出前5个符合要求的编号,即可得答案.【详解】由题设,依次得到的数字为57,47,17,34,07,27,50,17,36,25,23,……根据编号规则符合要求的依次为17,07,27,25,23,……所以第5个个体编号为23.故答案为:23.14、【解析】求导,得到,写出切线方程.【详解】因为,所以,则,所以曲线在点处的切线方程是,即,故答案为:15、【解析】联立直线与双曲线方程,可知二次项系数不为零、判别式大于零、两根之和与两根之积均大于零,据此构造不等式组,解不等式组求得结果.详解】将代入双曲线方程整理可得:设直线与双曲线右支交于两点,解得:本题正确结果:【点睛】本题考查根据直线与双曲线位置关系求解参数范围的问题,属于基础题.16、【解析】根据给定条件求出正项等比数列的公比即可计算作答.【详解】设正项等比数列的公比为,依题意,,即,而,解得,所以.故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析;(2).【解析】(1)根据题意证明,,然后根据线面垂直的判定定理证明问题;(2)结合(1),进而利用等体积法求得答案.【小问1详解】由题意,,为等边三角形,,∵平面ABCD,∴,则,即为中点.连接,∵平面,平面,∴,易得,则,又,于是,即,同理,即,又平面.【小问2详解】设M到平面的距离为d,,∴.易得,取BD的中点N,连接,则,所以,,所以,,.即M到平面的距离为1.18、(1)(2)或【解析】(1)点和的中垂线经过圆心,两直线联立方程得圆心坐标,再利用两点间距离公式求解半径.(2)已知弦长,求解直线方程,分类讨论斜率是否存在.小问1详解】点和的中点为,,所以中垂线的,利用点斜式得方程为,联立方程得圆心坐标为,所以圆C的标准方程为.【小问2详解】当过点的直线l斜率不存在时,直线方程为,此时弦长,符合题意.当过点的直线l斜率存在时,设直线方程为,化简得,弦心距,所以,解得,所以直线方程为.综上所述直线方程为或.19、(1);(2).【解析】(1)利用正弦定理可求得的值,结合角的取值范围可求得角的值;(2)由三角形的面积公式可求得的值,由已知可得,利用余弦定理可得出关于的等式,即可求得边的长.【小问1详解】解:因为,由正弦定理可得,,则,可得,,,因此,.【小问2详解】解:,可得,因为、、成等差数列,则,由余弦定理可得,解得.20、(1)证明见解析,(2)数列单调递减.【解析】(1)根据等差数列的定义即可证明数列为等差数列,然后套用等差数列的通项公式即可;(2)先根据(1)的结论求出数列的通项,然后用作差法即可判断其单调性【小问1详解】因为,,所以,所以,,所以数列是以1为首项,为公差的等差数列,【小问2详解】由(1)可知,,所以,所以,故,所以数列单调递减.21、(1)(2)分布列见解析;【解析】(1)利用组合的知识计算出基本事件总数和满足题意的基本事件数,根据古典概型概率公式求得结果;(2)确定所有可能的取值,根据超几何分布概率公式可计算出每个取值对应的概率,进而得到分布列和数学期望.【小问1详解】名同学中,会法语的人数为人,从人中选派人,共有种选法;其中恰有人会法语共有种选法;选派的人中恰有人会法语的概率.【小问2详解】由题意可知:所有可能的取值

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论