2024届北京市东城区第二十二中学高二数学第一学期期末学业质量监测模拟试题含解析_第1页
2024届北京市东城区第二十二中学高二数学第一学期期末学业质量监测模拟试题含解析_第2页
2024届北京市东城区第二十二中学高二数学第一学期期末学业质量监测模拟试题含解析_第3页
2024届北京市东城区第二十二中学高二数学第一学期期末学业质量监测模拟试题含解析_第4页
2024届北京市东城区第二十二中学高二数学第一学期期末学业质量监测模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届北京市东城区第二十二中学高二数学第一学期期末学业质量监测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.方程化简的结果是()A. B.C. D.2.已知等比数列的前3项和为3,,则()A. B.4C. D.13.函数,则不等式的解集是()A. B.C. D.4.化学中,将构成粒子(原子、离子或分子)在空间按一定规律呈周期性重复排列构成的固体物质称为晶体.在结构化学中,可将晶体结构截分为一个个包含等同内容的基本单位,这个基本单位叫做晶胞.已知钙、钛、氧可以形成如图所示的立方体晶胞(其中Ti原子位于晶胞的中心,Ca原子均在顶点位置,O原子位于棱的中点).则图中原子连线BF与所成角的余弦值为()A. B.C. D.5.若,则的虚部为()A. B.C. D.6.若直线被圆截得的弦长为4,则的最大值是()A. B.C.1 D.27.已知、是椭圆和双曲线的公共焦点,是它们的一个公共点,且,椭圆的离心率为,双曲线的离心率为,则()A.2 B.3C.4 D.58.在中,若,,,则此三角形解的情况为()A.无解 B.两解C.一解 D.解的个数不能确定9.下列直线中,与直线垂直的是()A. B.C. D.10.已知命题:,;命题:,使,若“”为假命题,则实数的取值范围是()A. B.C. D.11.已知椭圆的上下顶点分别为,一束光线从椭圆左焦点射出,经过反射后与椭圆交于点,则直线的斜率为()A. B.C. D.12.函数的导数为()A.B.CD.二、填空题:本题共4小题,每小题5分,共20分。13.若函数处取极值,则___________14.已知三棱锥的四个顶点在球的球面上,,是边长为正三角形,分别是的中点,,则球的体积为_________________15.已知等比数列满足,,公比,则的前2021项和______16.曲线在点(1,1)处的切线方程为_____三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知直线:和:(1)若,求实数m的值;(2)若,求实数m的值18.(12分)已知三角形内角所对的边分别为,且C为钝角.(1)求cosA;(2)若,,求三角形的面积.19.(12分)已知函数(1)判断的零点个数;(2)若对任意恒成立,求的取值范围20.(12分)如图,正方体的棱长为,分别是的中点,点在棱上,().(Ⅰ)三棱锥的体积分别为,当为何值时,最大?最大值为多少?(Ⅱ)若平面,证明:平面平面.21.(12分)已知椭圆:的长轴长是短轴长的倍,且经过点.(1)求的标准方程;(2)的右顶点为,过右焦点的直线与交于不同的两点,,求面积的最大值.22.(10分)已知等差数列满足:成等差数列,成等比数列.(1)求的通项公式:(2)在数列的每相邻两项与间插入个,使它们和原数列的项构成一个新数列,数列的前项和记为,求及.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】由方程的几何意义得到是椭圆,进而得到焦点和长轴长求解.【详解】∵方程,表示平面内到定点、的距离的和是常数的点的轨迹,∴它的轨迹是以为焦点,长轴,焦距的椭圆;∴;∴椭圆的方程是,即为化简的结果故选:D2、D【解析】设等比数列公比为,由已知结合等比数列的通项公式可求得,,代入即可求得结果.【详解】设等比数列的公比为,由,得即,又,即又,,解得又等比数列的前3项和为3,故,即,解得故选:D3、A【解析】利用导数判断函数单调递增,然后进行求解.【详解】对函数进行求导:,因为,,所以,因为,所以f(x)是奇函数,所以在R上单调递增,又因为,所以的解集为.故选:A4、C【解析】如图所示,以为坐标原点,所在的直线分别为轴,建立直角坐标系,设立方体的棱长为,求出的值,即可得到答案;【详解】如图所示,以为坐标原点,所在的直线分别为轴,建立直角坐标系,设立方体的棱长为,则,,,,连线与所成角的余弦值为故选:C.5、A【解析】根据复数的运算化简,由复数概念即可求解.【详解】因为,所以的虚部为,故选:A6、A【解析】根据弦长求得的关系式,结合基本不等式求得的最大值.【详解】圆的圆心为,半径为,所以直线过圆心,即,由于为正数,所以,当且仅当时,等号成立.故选:A7、C【解析】依据椭圆和双曲线定义和题给条件列方程组,得到关于椭圆的离心率和双曲线的离心率的关系式,即可求得的值.【详解】设椭圆的长轴长为,双曲线的实轴长为,令,不妨设则,解之得代入,可得整理得,即,也就是故选:C8、C【解析】求出的值,结合大边对大角定理可得出结论.【详解】由正弦定理可得可得,因为,则,故为锐角,故满足条件的只有一个.故选:C.9、C【解析】,,若,则,项,符合条件,故选10、D【解析】根据题意,判断命题和的真假性,结合判别式与二次函数恒成立问题,即可求解.【详解】根据题意,由为假命题可得“”为真命题,即p、q都为真命题,故,解得故选:D11、B【解析】根据给定条件借助椭圆的光学性质求出直线AD的方程,进而求出点D的坐标计算作答.【详解】依题意,椭圆的上顶点,下顶点,左焦点,右焦点,由椭圆的光学性质知,反射光线AD必过右焦点,于是得直线AD的方程为:,由得点,则有,所以直线的斜率为.故选:B12、B【解析】由导数运算法则可求出.【详解】,.故选:B.二、填空题:本题共4小题,每小题5分,共20分。13、3【解析】=.因为f(x)在1处取极值,所以1是f′(x)=0的根,将x=1代入得a=3.故答案为3.考点:利用导数研究函数的极值14、【解析】由已知设出,,,分别在中和在中运用余弦定理表示,得到关于x与y的关系式,再在中运用勾股定理得到关于x与y的又一关系式,联立可解得x,y,从而分析出正三棱锥是,,两两垂直的正三棱锥,所以三棱锥的外接球就是以为棱的正方体的外接球,再通过正方体的外接球的直径等于正方体的体对角线的长求出球的半径,再求出球的体积.【详解】在中,设,,,,,因为点,点分别是,的中点,所以,,在中,,在中,,整理得,因为是边长为的正三角形,所以,又因为,所以,由,解得,所以又因为是边长为的正三角形,所以,所以,所以,,两两垂直,则球为以为棱的正方体的外接球,则外接球直径为,所以球的体积为,故答案为.【点睛】本题主要考查空间几何体的外接球的体积,破解关键在于熟悉正三棱锥的结构特征,运用解三角形的正弦定理和余弦定理得出三棱锥的棱的关系,继而分析出正三棱锥的外接球是以正三棱锥中互相垂直的三条棱为棱的正方体的外接球,利用正方体的外接球的直径等于正方体的体对角线的长求解更方便快捷,属于中档题15、【解析】根据等比数列的求和公式求解即可.【详解】因为等比数列满足,,公比,所以,故答案为:16、【解析】根据导数的几何意义求出切线的斜率,再根据点斜式可求出结果.【详解】因为,所以曲线在点(1,1)处的切线的斜率为,所以所求切线方程为:,即.故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)2(2)或【解析】(1)易知两直线的斜率存在,根据,由斜率相等求解.(2)分和,根据,由直线的斜率之积为-1求解.【小问1详解】由直线的斜率存在,且为,则直线的斜率也存在,且为,因为,所以,解得或2,①当时,由此时直线,重合,②当时,,此时直线,平行,综上:若,则实数m的值为2【小问2详解】①当时,直线斜率为0,此时若必有,不可能.②当时,若必有,解得,由上知若,则实数m的值为或18、(1)(2)【解析】(1)由正弦定理边化角,可求得角的正弦,由同角关系结合条件可得答案.(2)由(1),由余弦定理,求出边的长,进一步求得面积【小问1详解】因为,由正弦定理得因为,所以.因为角为钝角,所以角为锐角,所以小问2详解】由(1),由余弦定理,得,所以,解得或,不合题意舍去,故的面积为=19、(1)个;(2).【解析】(1)求,利用导数判断的单调性,结合单调性以及零点存在性定理即可求解;(2)由题意可得对任意恒成立,令,则,利用导数求的最小值即可求解.【小问1详解】的定义域为,由可得,当时,;当时,;所以在上单调递减,在上单调递增,当时,,,此时在上无零点,当时,,,,且在上单调递增,由零点存在定理可得在区间上存在个零点,综上所述有个零点.【小问2详解】由题意可得:对任意恒成立,即对任意恒成立,令,则,由可得:,当时,;当时,,所以在上单调递减,在上单调递增,所以,所以,所以的取值范围.20、(Ⅰ),.(Ⅱ)见解析.【解析】(Ⅰ)由题可知,,由和,结合基本不等式可求最值;(Ⅱ)连接交于点,则为的中点,可得为中点,易证得,得平面,所以,进而可证得,,所以平面EFM,因为平面,从而得证.【详解】(Ⅰ)由题可知,,.所以(当且仅当,即时等号成立)所以当时,最大,最大值为.(Ⅱ)连接交于点,则为的中点,因为平面,平面平面,所以,所以为中点.连接,因为为中点,所以,因为,所以.因为平面,平面,所以,因为,所以平面,又平面,所以.同理,因为,所以平面EFM,因为平面,所以平面平面B1D1M.21、(1);(2)【解析】(1)利用已知条件,结合椭圆方程求出,即可得到椭圆方程(2)设出直线方程,联立椭圆与直线方程,利用韦达定理,弦长公式,列出三角形的面积,再利用基本不等式转化求解即可【详解】(1)解:由题意解得,,所以椭圆的标准方程为(2)点,右焦点,由题意知直线的斜率不为0,故设的方程为,,,联立方程得消去,整理得,∴,,,,当且仅当时等号成立,此时:,所以面积的最大值为【点睛】本题考查椭圆的性质和方程的求法,考查联立直

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论