版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023-2024学年江苏省淮安、宿迁等高二上数学期末联考模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知定义在上的函数的导函数为,且恒有,则下列不等式一定成立的是()A. B.C. D.2.已知、,直线,,且,则的最小值为()A. B.C. D.3.与直线关于轴对称的直线的方程为()A. B.C. D.4.已知椭圆的两个焦点分别为,且平行于轴的直线与椭圆交于两点,那么的值为()A. B.C. D.5.已知定义在区间上的函数,,若以上两函数的图像有公共点,且在公共点处切线相同,则m的值为()A.2 B.5C.1 D.06.若圆上恰有2个点到直线的距离为1,则实数的取值范围为()A B.C. D.7.已知数列中,,则()A.2 B.C. D.8.在三棱锥中,,,,若,,则()A. B.C. D.9.若方程表示焦点在y轴上的双曲线,则k的取值范围是()A. B.C. D.10.若抛物线焦点与椭圆的右焦点重合,则的值为A. B.C. D.11.抛物线准线方程为()A. B.C. D.12.已知数列的通项公式为,则()A.12 B.14C.16 D.18二、填空题:本题共4小题,每小题5分,共20分。13.已知斜率为1的直线经过椭圆的左焦点,且与椭圆交于,两点,若椭圆上存在点,使得的重心恰好是坐标原点,则椭圆的离心率______.14.已知过点作抛物线的两条切线,切点分别为A,B,直线AB经过抛物线C的焦点F,则___________15.在中,,,,则此三角形的最大边长为___________.16.如图,一个小球从10m高处自由落下,每次着地后又弹回到原来高度的,若已知小球经过的路程为,则小球落地的次数为______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数.(1)求函数f(x)的最小正周期;(2)当时,求函数f(x)的值域.18.(12分)已知数列的前n项和,(1)求数列的通项公式;(2)设,,求数列的前n项和19.(12分)设:实数满足,:实数满足(1)若,且为真,求实数的取值范围;(2)若是的必要不充分条件,求实数的取值范围20.(12分)如图,正三棱柱的侧棱长为,底面边长为,点为的中点,点在直线上,且(1)证明:面;(2)求平面和平面夹角的余弦值21.(12分)在平面直角坐标系中,已知抛物线的焦点与椭圆的右焦点重合(1)求椭圆的离心率;(2)求抛物线的方程;(3)设是抛物线上一点,且,求点的坐标22.(10分)在①,②,③这三个条件中任选一个补充在下面问题中,并解答下列题目设首项为2的数列的前n项和为,前n项积为,且(1)求数列的通项公式;(2)求的值
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】构造函数,用导数判断函数单调性,即可求解.【详解】根据题意,令,其中,则,∵,∴,∴在上为单调递减函数,∴,即,,则错误;,即,则错误;,即,则错误;,即,则正确;故选:.2、D【解析】先由,可得,变形得,所以,化简后利用基本不等式求解即可【详解】因为、,直线,,且,所以,即,所以,所以,所以,当且仅当,即时,取等号,所以的最小值为,故选:D3、D【解析】点关于x轴对称,横坐标不变,纵坐标互为相反数,据此即可求解.【详解】设(x,y)是与直线关于轴对称的直线上任意一点,则(x,-y)在上,故,∴与直线关于轴对称的直线的方程为.故选:D.4、A【解析】根据椭圆的方程求出,再由椭圆的对称性及定义求解即可.【详解】由椭圆的对称性可知,,所以,又椭圆方程为,所以,解得,所以,故选:A5、C【解析】设两曲线与公共点为,分别求得函数的导数,根据两函数的图像有公共点,且在公共点处切线相同,列出等式,求得公共点的坐标,代入函数,即可求解.【详解】根据题意,设两曲线与公共点为,其中,由,可得,则切线的斜率为,由,可得,则切线斜率为,因为两函数的图像有公共点,且在公共点处切线相同,所以,解得或(舍去),又由,即公共点的坐标为,将点代入,可得.故选:C.6、A【解析】求得圆心到直线的距离,根据题意列出的不等关系式,即可求得的范围.【详解】因为圆心到直线的距离,故要满足题意,只需,解得.故选:A.7、A【解析】根据数列的周期性即可求解.【详解】由得,显然该数列中的数从开始循环,数列的周期是,所以.故选:A.8、B【解析】根据空间向量的基本定理及向量的运算法则计算即可得出结果.【详解】连接,因为,所以,因为,所以,所以,故选:B9、B【解析】由条件可得,即可得到答案.【详解】方程表示焦点在y轴上的双曲线所以,即故选:B10、D【解析】解:椭圆的右焦点为(2,0),所以抛物线的焦点为(2,0),则,故选D11、D【解析】由抛物线的准线方程即可求解【详解】由抛物线方程得:.所以,抛物线的准线方程为故选D【点睛】本题主要考查了抛物线的准线方程,属于基础题12、D【解析】利用给定的通项公式直接计算即得.【详解】因数列的通项公式为,则有,所以.故选:D二、填空题:本题共4小题,每小题5分,共20分。13、【解析】设点,,坐标分别为,则根据题意有,分别将点,,的坐标代入椭圆方程得,然后联立直线与椭圆方程,利用韦达定理得到和的值,代入得到关于的齐次式,然后解出离心率.【详解】设,,坐标分别为,因为的重心恰好是坐标原点,则,则,代入椭圆方程可得,其中,所以……①因为直线的斜率为,且过左焦点,则的方程为:,联立方程消去可得:,所以,……②所以……③,将②③代入①得,从而.故答案为:【点睛】本题考查椭圆的离心率求解问题,难度较大.解答时,注意,,三点坐标之间的关系,注意韦达定理在解题中的运用.14、【解析】设出点的坐标,与抛物线方程联立,结合题意和韦达定理,求得抛物线的方程为,直线AB的方程为,进而求得的值.【详解】设,在抛物线,过切点A与抛物线相切的直线的斜率为,则以为切点的切线方程为,联立方程组,整理得,则,整理得,所以,解得,所以以为切点的切线方程为,即,同理,设,在抛物线,过切点B与抛物线相切的直线,又因为在切线和,所以,所以直线AB的方程为,又直线AB过抛物线的焦点,所以令,可得,即,所以抛物线的方程为,直线AB的方程为,联立方程组,整理得或,所以,所以.故答案为:.15、【解析】可知B对的边最大,再用正弦定理计算即可.【详解】利用正弦定理可知,B对的边最大,因为,,所以,.故答案为:16、4【解析】设小球从第(n-1)次落地到第n次落地时经过的路程为m,则由已知可得数列是从第2项开始以首项为,公比为的等比数列,根据等比数列的通项公式求得,再设设小球第n次落地时,经过的路程为,由等比数列的求和公式建立方程求解即可.【详解】解:设小球从第(n-1)次落地到第n次落地时经过的路程为m,则当时,得出递推关系,所以数列是从第2项开始以首项为,公比为的等比数列,所以,且,设小球第n次落地时,经过的路程为,所以,所以,解得,故答案为:4.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】(1)先通过降幂公式和辅助角公式将函数化简,进而求出周期;(2)求出的范围,进而结合三角函数的性质求得答案.【小问1详解】,函数最小正周期为.【小问2详解】当时,,,∴,即函数的值域为.18、(1);(2)【解析】(1)将代入可求得.根据通项公式与前项和的关系,可得数列为等比数列,由等比数列的通项公式即可求得数列的通项公式.(2)由(1)可得数列的通项公式,代入中,结合裂项法求和即可得前n项和.【详解】(1)当时,由得;当时,由得是首项为3,公比为3的等比数列当,满足此式所以(2)由(1)可知,【点睛】本题考查了通项公式与前项和的关系,裂项法求和的应用,属于基础题.19、(1)(2)【解析】(1)根据二次不等式与分式不等式的求解方法求得命题p,q为真时实数x的取值范围,再求交集即可;(2)先求得,再根据是的必要不充分条件可得,再根据集合包含关系,根据区间端点列不等式求解即可【小问1详解】当时,,解得,即p为真时,实数x的取值范围为.由,解得,即q为真时,实数x的取值范围为若为真,则,解得实数x的取值范围为【小问2详解】若p是q的必要不充分条件,则且设,,则,又由,得,因为,则,有,解得因此a的取值范围为20、(1)证明见解析(2)【解析】(1)证明平面,可得出,再由结合线面垂直的判定定理可证得结论成立;(2)以点为坐标原点,、、的方向分别为、、轴的正方向建立空间直角坐标系,利用空间向量法可求得结果.【小问1详解】证明:正中,点为的中点,,因为平面,平面,则,,则平面,平面,则,又,且,平面.【小问2详解】解:因为,以点为坐标原点,、、的方向分别为、、轴的正方向建立如下图所示的空间直角坐标系,则、、、,设平面的法向量为,,,则,取,可得,平面,平面,则,又因为,,故平面,所以,平面的一个法向量为,则.因此,平面和平面夹角的余弦值为.21、(1);(2);(3)【解析】(1)由椭圆方程即可求出离心率.(2)求出椭圆的焦点即为抛物线的焦点,即可求出答案.(3)由抛物线定义可求出点的坐标【小问1详解】由题意可知,.【小问2详解】椭圆的右焦点为,故抛物线的焦点为.抛物线的方程为.【小问3详解】设的坐标为,,解得,.故的坐标为.22、(1)(2)【解析】(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度商业地产项目地下车位使用权转让合同4篇
- 2025产业园项目幕墙二次深化设计、监理及验收服务合同2篇
- 2024年缝纫设备及相关技术咨询合同
- 2025年度新能源汽车买卖及售后服务合同4篇
- 2025年度智能车库门购销安装一体化服务合同4篇
- 2025年度智能安防监控系统设计与实施合同4篇
- 2024铁路信号设备更新改造工程合同文本3篇
- 中国医用呼吸机行业市场调查研究及投资战略咨询报告
- 中国家居百货行业市场调查研究及投资前景预测报告
- 2025年度个人房屋抵押贷款合同终止协议4篇
- C及C++程序设计课件
- 带状疱疹护理查房
- 公路路基路面现场测试随机选点记录
- 平衡计分卡-化战略为行动
- 国家自然科学基金(NSFC)申请书样本
- 幼儿教师干预幼儿同伴冲突的行为研究 论文
- 湖南省省级温室气体排放清单土地利用变化和林业部分
- 材料设备验收管理流程图
- 培训机构消防安全承诺书范文(通用5篇)
- (完整版)建筑业10项新技术(2017年最新版)
- 第8期监理月报(江苏版)
评论
0/150
提交评论