2023-2024学年江苏省常州第一中学数学高二上期末教学质量检测模拟试题含解析_第1页
2023-2024学年江苏省常州第一中学数学高二上期末教学质量检测模拟试题含解析_第2页
2023-2024学年江苏省常州第一中学数学高二上期末教学质量检测模拟试题含解析_第3页
2023-2024学年江苏省常州第一中学数学高二上期末教学质量检测模拟试题含解析_第4页
2023-2024学年江苏省常州第一中学数学高二上期末教学质量检测模拟试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023-2024学年江苏省常州第一中学数学高二上期末教学质量检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知四面体中,,若该四面体的外接球的球心为,则的面积为()A. B.C. D.2.椭圆:与双曲线:的离心率之积为2,则双曲线的渐近线方程为()A. B.C. D.3.已知双曲线的左、右焦点分别为,点在的左支上,过点作的一条渐近线的垂线,垂足为,则的最小值为()A. B.C. D.4.已知函数在处取得极值,则的极大值为()A. B.C. D.5.设是椭圆的两个焦点,是椭圆上一点,且.则的面积为()A.6 B.C.8 D.6.已知,,,则的大小关系是()A. B.C. D.7.数列2,,9,,的一个通项公式可以是()A. B.C. D.8.“”是“函数在上有极值”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件9.已知则是的A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件10.命题,,则是()A., B.,C., D.,11.函数在上是单调递增函数,则的最大值等于()A.2 B.3C.5 D.612.抛掷一枚质地均匀的骰子两次,记{两次的点数均为奇数},{两次的点数之和为8},则()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.莱昂哈德·欧拉于1765年在他的著作《三角形的几何学》中首次提出定理:三角形的重心、垂心和外心共线.后来人们称这条直线为该三角形的欧拉线.已知的三个顶点坐标分别是,,,则的垂心坐标为______,的欧拉线方程为______14.已知点P是抛物线上的一个动点,则点P到点M(0,2)的距离与点P到该抛物线准线的距离之和的最小值为______________15.已知p:“”为真命题,则实数a的取值范围是_________.16.抛物线的准线方程为_______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)“既要金山银山,又要绿水青山”.滨江风景区在一个直径为100米的半圆形花园中设计一条观光线路(如图所示).在点与圆弧上的一点(不同于A,B两点)之间设计为直线段小路,在直线段小路的两侧(注意是两侧)种植绿化带;再从点到点设计为沿弧的弧形小路,在弧形小路的内侧(注意是一侧)种植绿化带(注:小路及绿化带的宽度忽略不计).(1)设(弧度),将绿化带总长度表示为的函数;(2)试确定的值,使得绿化带总长度最大.(弧度公式:,其中为弧所对的圆心角)18.(12分)已知是等差数列,是各项都为正数的等比数列,,再从①;②;③这三个条件中选择___________,___________两个作为已知.(1)求数列的通项公式;(2)求数列的前项和.19.(12分)已知直线,半径为的圆与相切,圆心在轴上且在直线的右上方.(1)求圆的方程;(2)过点的直线与圆交于两点在轴上方),问在轴正半轴上是否存在定点,使得轴平分?若存在,请求出点的坐标;若不存在,请说明理由.20.(12分)已知直线l:x-y+2=0,一个圆的圆心C在x轴正半轴上,且该圆与直线l和y轴均相切(1)求该圆的方程;(2)若直线x+my-1=0与圆C交于A、B两点,且|AB|=,求m的值21.(12分)已知函数在时有极值0.(1)求函数的解析式;(2)记,若函数有三个零点,求实数的取值范围.22.(10分)已知在平面直角坐标系中,圆A:的圆心为A,过点B(,0)任作直线l交圆A于点C、D,过点B作与AD平行的直线交AC于点E.(1)求动点E的轨迹方程;(2)设动点E的轨迹与y轴正半轴交于点P,过点P且斜率为k1,k2的两直线交动点E的轨迹于M、N两点(异于点P),若,证明:直线MN过定点.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】根据四面体的性质,结合线面垂直的判定定理、球的性质、正弦定理进行求解即可.【详解】由图设点为中点,连接,由,所以,面,则面,且,所以球心面,所以平面与球面的截面为大圆,延长线与此大圆交于点.在三角形中,由,所以,由正弦定理知:三角形的外接圆半径为,设三角形的外接圆圆心为点,则面,有,则,设的外接圆圆心为点,则面,由正弦定理知:三角形PAB的外接圆半径为,所以,又三角形中,,所以为的角平分线,则,在直角三角形OMD中,,在直角三角形OED中,,在三角形中,取中点,由,所以,故选:C.【点睛】关键点睛:运用正弦定理、勾股定理、线面垂直的判定定理是解题的关键.2、C【解析】先求出椭圆的离心率,再由题意得出双曲线的离心率,根据离心率即可求出渐近线斜率得解.【详解】椭圆:的离心率为,则,依题意,双曲线;的离心率为,而,于是得,解得:,所以双曲线的渐近线方程为故选:C3、D【解析】利用双曲线定义可得到,将的最小值变为的最小值问题,数形结合得解.【详解】由题意得,故,如图所示:到渐近线的距离,则,当且仅当,,三点共线时取等号,∴的最小值为.故选:D4、B【解析】首先求出函数的导函数,依题意可得,即可求出参数的值,从而得到函数解析式,再根据导函数得到函数单调性,即可求出函数的极值点,从而求出函数的极大值;【详解】解:因为,所以,依题意可得,即,解得,所以定义域为,且,令,解得或,令解得,即在和上单调递增,在上单调递减,即在处取得极大值,在处取得极小值,所以;故选:B5、B【解析】利用椭圆的几何性质,得到,,进而利用得出,进而可求出【详解】解:由椭圆的方程可得,所以,得且,,在中,由余弦定理可得,而,所以,,又因为,,所以,所以,故选:B6、B【解析】利用微积分基本定理计算,利用积分的几何意义求扇形面积得到,然后比较大小.【详解】,表示以原点为圆心,半径为2的圆在第二象限的部分的面积,∴;,∵e=2.71828…>2.7,,,,故选:7、C【解析】用检验法,由通项公式验证是否符合数列各项,结合排除法可得【详解】第一项为正数,BD中求出第一项均为负数,排除,而AC均满足,A中,,排除A,C中满足,,,故选:C8、B【解析】对求导,取得函数在上有极值的等价条件,再根据充分条件和必要条件的定义进行判断即可【详解】解:,则,令,可得,当时,,当时,,即在上单调递减,在上单调递增,所以,函数在处取得极小值,若函数在上有极值,则,,因为,但是由推不出,因此是函数在上有极值的必要不充分条件故选:B9、A【解析】先解不等式,再比较集合包含关系确定选项.【详解】因为,所以是的充分不必要条件,选A.【点睛】本题考查解含绝对值不等式、解一元二次不等式以及充要关系判定,考查基本分析求解能力,属基础题.10、D【解析】根据特称命题的否定为全称命题,即可得到答案.【详解】因为命题,,所以,.故选:D11、B【解析】由f(x)=x3﹣ax在[1,+∞)上是单调增函数,得到在[1,+∞)上,恒成立,从而解得a≤3,故a的最大值为3【详解】解:∵f(x)=x3﹣ax在[1,+∞)上是单调增函数∴在[1,+∞)上恒成立即a≤3x2,∵x∈[1,+∞)时,3x2≥3恒成立,∴a≤3,∴a的最大值是3故选:B12、B【解析】利用条件概率公式进行求解.【详解】,其中表示:两次点数均为奇数,且两次点数之和为8,共有两种情况,即,故,而,所以,故选:B二、填空题:本题共4小题,每小题5分,共20分。13、①.##(0,1.5)②.【解析】由高线联立可得垂心,由垂心与重心可得欧拉线方程.【详解】由,可知边上的高所在的直线为,又,因此边上的高所在的直线的斜率为,所以边上的高所在的直线为:,即,所以,所以的垂心坐标为,由重心坐标公式可得的重心坐标为,所以的欧拉线方程为:,化简得.故答案为:;14、【解析】由抛物线的定义得:,所以,当三点共线时,最小可得答案.【详解】如图所示:,由抛物线的定义得:,所以,由图象知:当三点共线时,最小,.故答案为:.15、【解析】根据条件将问题转化不等式在上有解,则,由此求解出的取值范围.【详解】因为“”为真命题,所以不等式在上有解,所以,所以,故答案为:.16、【解析】由抛物线的标准方程为x2=y,得抛物线是焦点在y轴正半轴的抛物线,2p=1,∴其准线方程是y=,故答案为三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】(1)在直角三角形中,求出,在扇形中利用弧长公式求出弧的长度,则可得函数;(2)利用导数可求得结果.【详解】(1)如图,连接在直角三角形中,所以由于则弧的长为(2)由(1)可知,令得,因为所以,当单调递增,当单调递减,所以当时,使得绿化带总长度最大.【点睛】关键点点睛:仔细审题,注意题目中的关键词“两侧”和“一侧”是解题关键.18、答案见解析【解析】(1)根据题设条件可得关于基本量的方程组,求解后可得的通项公式.(2)利用公式法可求数列的前项和.【详解】解:选择条件①和条件②(1)设等差数列的公差为,∴解得:,.∴,.(2)设等比数列的公比为,,∴解得,.设数列的前项和为,∴.选择条件①和条件③:(1)设等差数列的公差为,∴解得:,.∴.(2),设等比数列的公比为,.∴,解得,.设数列的前项和为,∴.选择条件②和条件③:(1)设等比数列的公比为,,∴,解得,,.设等差数列的公差为,∴,又,故.∴.(2)设数列的前项和为,由(1)可知.【点睛】方法点睛:等差数列或等比数列的处理有两类基本方法:(1)利用基本量即把数学问题转化为关于基本量的方程或方程组,再运用基本量解决与数列相关的问题;(2)利用数列的性质求解即通过观察下标的特征和数列和式的特征选择合适的数列性质处理数学问题19、(1);(2)存在,.【解析】(1)设出圆心,根据圆心到直线距离等于半径列方程求出的值可得圆心坐标,进而可得圆的方程;(2)由题可设直线的方程为,与圆的方程联立,利用韦达定理及可得,即得.【小问1详解】由已知可设圆心,则,解得或(舍).所以圆.【小问2详解】由题可设直线的方程为,由,得到:显然成立,所以.①若轴平分,则,所以:,整理得:,将①代入整理得对任意的恒成立,则.∴存在点为时,使得轴平分.20、(1)(2)0【解析】(1)设出圆心坐标,利用题干条件得到方程,求出,从而求出该圆的方程;(2)利用点到直线距离公式及垂径定理进行求解.【小问1详解】设圆心为,,则由题意得:,解得:或(舍去),故该圆的方程为【小问2详解】圆心到直线的距离为,由垂径定理得:,解得:21、(1)(2)【解析】(1)求出函数的导函数,由在时有极值0,则,两式联立可求常数a,b的值,从而得解析式;(2)利用导数研究函数的单调性、极值,根据函数图象的大致形状可求出参数的取值范围.【小问1详解】由可得,因为在时有极值0,所以,即,解得或,当时,,函数在R上单调递增,不满足在时有极值,故舍去.所以常数a,b的值分别为.所以.【小问2详解】由(1)可知,,令,解得,当或时,当时,,的递增区间是和,单调递减区间为,当有极大值,当有极小值,要使函数有三个零点,则须满足,解得.22、(1)(2)证明见解析【解析】(1)作出图象,易知|EB|+|EA|为定值,根据椭圆定义即可判断点E的轨迹,从而写出其轨迹方程;(2)设,当直线MN斜率存在时,设直线MN的方程为:,联立MN方程和E的轨迹方程得根与系数的关系,根据解出k与m的关系即可以判断MN过定点;最后再考虑MN斜率不存在时是否也过该定点即可.【小问1详解】由圆A:可得(,∴圆心A(-,0),圆的半径r=8,,,可得,,,由椭圆的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论