版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023-2024学年四川省资阳市乐至中学高二上数学期末联考模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知椭圆C:()的长轴的长为4,焦距为2,则C的方程为()A B.C. D.2.已知奇函数,则的解集为()A. B.C. D.3.向量,向量,若,则实数()A. B.1C. D.4.变量与的数据如表所示,其中缺少了一个数值,已知关于的线性回归方程为,则缺少的数值为()22232425262324▲2628A.24 B.25C.25.5 D.265.等比数列的第4项与第6项分别为12和48,则公比的值为()A. B.2C.或2 D.或6.若,则下列等式一定成立的是()A. B.C. D.7.已知的周长为,顶点、的坐标分别为、,则点的轨迹方程为()A. B.C. D.8.若曲线f(x)=x2的一条切线l与直线平行,则l的方程为()A.4x-y-4=0 B.x+4y-5=0C.x-4y+3=0 D.4x+y+4=09.已知双曲线:,直线经过点,若直线与双曲线的右支只有一个交点,则直线的斜率的取值范围是()A. B.C. D.10.命题,,则是()A., B.,C., D.,11.阿波罗尼斯是古希腊著名数学家,与欧几里得、阿基米德并称为亚历山大时期数学三巨匠,他对圆锥曲线有深刻而系统的研究,主要研究成果集中在他的代表作《圆锥曲线》一书,阿波罗尼斯圆就是他的研究成果之一.指的是:已知动点与两定点的距离之比,那么点的轨迹就是阿波罗尼斯圆.已知动点的轨迹是阿波罗尼斯圆,其方程为,其中,定点为轴上一点,定点的坐标为,若点,则的最小值为()A. B.C. D.12.某种产品的广告费支出与销售额(单位:万元)之间的关系如下表:245683040605070若已知与的线性回归方程为,那么当广告费支出为5万元时,随机误差的效应(残差)为万元(残差=真实值-预测值)A.40 B.30C.20 D.10二、填空题:本题共4小题,每小题5分,共20分。13.正四棱锥底面边长和高均为分别是其所在棱的中点,则棱台的体积为___________.14.已知,,,若,则______.15.设O为坐标原点,抛物线的焦点为F,P为抛物线上一点,若,则的面积为____________16.在平面上给定相异两点A,B,点P满足,则当且时,P点的轨迹是一个圆,我们称这个圆为阿波罗尼斯圆.已知椭圆的离心率,A,B为椭圆的长轴端点,C,D为椭圆的短轴端点,动点P满足,若的面积的最大值为3,则面积的最小值为___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知椭圆的离心率为,点在椭圆上.(1)求椭圆的方程;(2)过点作轴的平行线交轴于点,过点的直线与椭圆交于两个不同的点、,直线、与轴分别交于、两点,若,求直线的方程;(3)在第(2)问条件下,点是椭圆上的一个动点,请问:当点与点关于轴对称时的面积是否达到最大?并说明理由.18.(12分)已知抛物线C:y2=2px(p>0)的焦点为F,P(5,a)为抛物线C上一点,且|PF|=8(1)求抛物线C的方程;(2)过点F的直线l与抛物线C交于A,B两点,以线段AB为直径的圆过Q(0,﹣3),求直线l的方程19.(12分)如图,在四棱锥中,底面,,是的中点,,.(1)证明:;(2)求直线与平面所成角的正弦值.20.(12分)已知数列是公差为2的等差数列,它的前n项和为,且,,成等比数列(1)求的通项公式(2)求数列的前n项和21.(12分)如图,在四棱锥中,为平行四边形,,平面,且,点是的中点.(1)求证:平面;(2)在线段上(不含端点)是否存在一点,使得二面角的余弦值为?若存在,确定的位置;若不存在,请说明理由.22.(10分)各项都为正数的数列的前项和为,且满足.(1)求数列的通项公式;(2)求;(3)设,数列的前项和为,求使成立的的最小值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】由题设可得求出椭圆参数,即可得方程.【详解】由题设,知:,可得,则,∴C的方程为.故选:D.2、A【解析】先由求出的值,进而可得的解析式,对求导,利用基本不等式可判断恒成立,可判断的单调性,根据单调性脱掉,再解不等式即可.【详解】的定义域为,因为是奇函数,所以,可得:,所以,经检验是奇函数,符合题意,所以,因为,所以,当且仅当即时等号成立,所以在上单调递增,由可得,即,解得:或,所以的解集为,故选:A.3、C【解析】由空间向量垂直的坐标表示列方程即可求解.【详解】因为向量,向量,若,则,解得:,故选:C.4、A【解析】可设出缺少的数值,利用表中的数据,分别表示出、,将样本中心点带入回归方程,即可求得参数.【详解】设缺少的数值为,则,,因为回归直线方程经过样本点的中心,所以,解得.故选:A5、C【解析】根据等比数列的通项公式计算可得;详解】解:依题意、,所以,即,所以;故选:C6、D【解析】利用复数除法运算和复数相等可用表示出,进而得到之间关系.【详解】,,,则.故选:D.7、D【解析】分析可知点的轨迹是除去长轴端点的椭圆,求出、的值,结合椭圆焦点的位置可得出顶点的轨迹方程.【详解】由已知可得,,且、、三点不共线,故点的轨迹是以、为焦点,且除去长轴端点的椭圆,由已知可得,得,,则,因此,点的轨迹方程为.故选:D.8、D【解析】设切点为,则切线的斜率为,然后根据条件可得的值,然后可得答案.【详解】设切点为,因为,所以切线的斜率为因为曲线f(x)=x2的一条切线l与直线平行,所以,即所以l的方程为,即故选:D9、D【解析】以双曲线的两条渐近线作为边界条件,即可保证直线与双曲线的右支只有一个交点.【详解】双曲线:的两条渐近线为和两渐近线的倾斜角分别为和由经过点的直线与双曲线的右支只有一个交点,可知直线的倾斜角取值范围为,故直线的斜率的取值范围是故选:D10、D【解析】根据特称命题的否定为全称命题,即可得到答案.【详解】因为命题,,所以,.故选:D11、D【解析】设,,根据和求出a的值,由,两点之间直线最短,可得的最小值为,根据坐标求出即可.【详解】设,,所以,由,所以,因为且,所以,整理可得,又动点M的轨迹是,所以,解得,所以,又,所以,因为,所以的最小值,当M在位置或时等号成立.故选:D12、D【解析】分析:把所给的广告费支出5万元时,代入线性回归方程,做出相应的销售额,这是一个预测值,再求出与真实值之间有一个误差即得.详解:与的线性回归方程为,当时,50,当广告费支出5万元时,由表格得:,故随机误差的效应(残差)为万元.故选D.点睛:本题考查回归分析的初步应用,考查求线性回归方程,考查预测y的值,是一个综合题二、填空题:本题共4小题,每小题5分,共20分。13、【解析】分别计算,,作差得到答案.【详解】分别是其所在棱的中点,则正四棱锥底面边长和高均为,,,故.故答案为:.14、【解析】根据题意,由向量坐标表示,列出方程,求出,,即可得出结果.【详解】因为,,,若,则,解得,所以.故答案为:.【点睛】本题主要考查由向量坐标表示求参数,属于基础题型.15、【解析】根据抛物线定义求出点坐标,即可求出面积.【详解】由题可得,设,则由抛物线定义可得,解得,代入抛物线方程可得,所以.故答案为:.16、【解析】先根据求出圆的方程,再由的面积的最大值结合离心率求出和的值,进而求出面积的最小值.【详解】解:由题意,设,,因为即两边平方整理得:所以圆心为,半径因为的面积的最大值为3所以,解得:因为椭圆离心率即,所以由得:所以面积的最小值为:故答案为:.【点睛】思路点睛:本题先根据已知的比例关系求出阿波罗尼斯圆的方程,再利用已知面积和离心率求出椭圆的方程,进而求得面积的最值.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2);(3)当点与点关于轴对称时,的面积达到最大,理由见解析.【解析】(1)设,可得出,,将点的坐标代入椭圆的方程,求出的值,即可得出椭圆的方程;(2)分析可知直线的斜率存在,设直线的方程为,设点、,将直线的方程与椭圆的方程联立,列出韦达定理,由已知可得,结合韦达定理可求得的值,即可得出直线的方程;(3)设与直线平行且与椭圆相切的直线的方程为,将该直线方程与椭圆的方程联立,由判别式为零可求得,分析可知当点为直线与椭圆的切点时,的面积达到最大,求出直线与椭圆的切点坐标,可得出结论.【小问1详解】解:因为,设,则,,所以,椭圆的方程可表示为,将点的坐标代入椭圆的方程可得,解得,因此,椭圆的方程为.【小问2详解】解:设线段的中点为,因为,则轴,故直线、的倾斜角互补,易知点,若直线轴,则、为椭圆短轴的两个顶点,不妨设点、,则,,,不合乎题意.所以,直线的斜率存在,设直线的方程为,设点、,联立,可得,,由韦达定理可得,,,,则,所以,解得,因此,直线的方程为.【小问3详解】解:设与直线平行且与椭圆相切的直线的方程为,联立,可得(*),,解得,由题意可知,当点为直线与椭圆的切点时,此时的面积取最大值,当时,方程(*)为,解得,此时,即点.此时,点与点关于轴对称,因此,当点与点关于轴对称时,的面积达到最大.【点睛】方法点睛:圆锥曲线中的最值问题解决方法一般分两种:一是几何法,特别是用圆锥曲线的定义和平面几何的有关结论来求最值;二是代数法,常将圆锥曲线的最值问题转化为二次函数或三角函数的最值问题,然后利用基本不等式、函数的单调性或三角函数的有界性等求最值18、(1);(2)2x﹣y﹣6=0﹒【解析】(1)根据抛物线焦半径公式构造方程求得,从而得到结果(2)设直线,代入抛物线方程可得韦达定理的形式,根据可构造方程求得,从而得到直线方程【小问1详解】由抛物线定义可知:,解得:,抛物线的方程为:【小问2详解】由抛物线方程知:,设直线,,,,,联立方程,得:,,,以线段为直径的圆过点,,,解得:,直线的方程为:,即19、(1)证明见解析(2)【解析】(1)建立空间直角坐标系,分别求出向量和,证明即可;(2)先求出和平面的法向量,然后利用公式求出,则直线与平面所成角的正弦值即为.【小问1详解】证明:∵,,∴△≌△,∴,设,在△中,由余弦定理得,即,则,即,,连接交于点,分别以,为轴、轴,过作轴,建立如图空间直角坐标系,则,,,,,,的中点,则,,∵,∴.【小问2详解】由(1)可知,,,,设平面的法向量为,则,即,令,则,即,则,记直线与平面所成角为,.20、(1);(2)【解析】(1)根据等差数列的通项公式,分别表示出与,由等比中项定义即可求得首项,进而求得的通项公式(2)根据等差数列的首项与公差,求出的前n项和,进而可知,再用裂项法可求得【详解】(1)由题意,得,,所以由,得,解得,所以,即(2)由(1)知,则,,【点睛】本题考查了等差数列通项公式的应用,等比中项的定义,裂项法求数列前n项和的简单应用,属于基础题21、(1)见解析(2)存在,【解析】(1)连接交于点,由三角形中位线性质知,由线面平行判定定理证得结论;(2)以为原点建立空间直角坐标系,假设,可用表示出点坐标;根据二面角的向量求法可根据二面角的余弦值构造出关于的方程,从而解得结果.【详解】(1)连接交于点,连接,四边形为平行四边形,为中点,又为中点,,平面,平面,平面;(2)平面,,两两互相垂直,则以为坐标原点,可建立如下图所示的空间直角坐标系:则,,,,,,设,且,则,,即,设平面的法向量,又,,则,令,则,,;设平面的一个法向量,又,,则,令,则,,;,解得:或,二面角的余弦值为,二面角为锐二面角,不满足题意,舍去,即.在线段上存在点,时,二面角的余弦值为.【点睛】本题考查立体几何中的线面平行关系的证明、存在性问题的求解;求解存在性问题的关键是能够利用共线向量的方式将所求点坐标表示出来,进而利用二面角的向量求法构造方程;易错点是忽略二面角的范围,造成参数值求解错误
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《供配电技术》第1章 教案
- 综合实践的心得体会范文
- 文员的实习报告
- 青春的三分钟演讲稿范文(33篇)
- 房屋转让合同
- 少先队缅怀先烈活动方案
- DB12-T 1090-2021 1:500 1:2000基础地理信息要素数据库技术规范
- 2024年心电图机项目资金筹措计划书代可行性研究报告
- 财务报表分析 教案 项目六 财务报表综合分析
- 2023-2024学年广东省深圳市华附集团八年级(下)期中英语试卷
- 诺如病毒护理查房
- 医疗设备移机服务投标方案
- 塑料杯模具设计
- 四川省凉山州西昌市2022-2023学年高一上学期期中考试数学试题
- 橡塑绝热保冷材料施工方案
- 学前教育学 第七章 幼儿园教学活动
- 小学英语写作教学的思考与实践 桂婷婷
- 北师大版七年级数学上册专题2.5 新定义问题(压轴题专项讲练)(教师版)
- 乌鸦喝水(绘本)
- 低碳钢浸塑料围网施工方案
- 《分香蕉》二年级数学
评论
0/150
提交评论