版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023-2024学年龙岩市重点中学高二上数学期末质量检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知圆的半径为,平面上一定点到圆心的距离,是圆上任意一点.线段的垂直平分线和直线相交于点,设点在圆上运动时,点的轨迹为,当时,轨迹对应曲线的离心率取值范围为()A. B.C. D.2.年月日,很多人的微信圈都在转发这样一条微信:“,所遇皆为对,所做皆称心””.形如“”的数字叫“回文数”,即从左到右读和从右到左读都一样的正整数,则位的回文数共有()A. B.C. D.3.三棱锥A-BCD中,E,F,H分别为边CD,AD,BC的中点,BE,DH的交点为G,则的化简结果为()A. B.C. D.4.数学家欧拉在1765年发现,任意三角形的外心、重心、垂心位于同一条直线上,这条直线称为欧拉线.已知的顶点,,若其欧拉线的方程为,则顶点的坐标为()A. B.C. D.5.已知函数.若数列的前n项和为,且满足,,则的最大值为()A.9 B.12C.20 D.6.如图,在三棱柱中,E,F分别是BC,中点,,则()A.B.C.D.7.如图,在四面体中,,,,,为线段的中点,则等于()A B.C. D.8.阿基米德既是古希腊著名的物理学家,也是著名的数学家,他利用“逼近法”得到椭圆的面积除以圆周率等于椭圆的长半轴长与短半轴长的乘积.若椭圆的中心为原点,焦点、在轴上,椭圆的面积为,且离心率为,则的标准方程为()A. B.C. D.9.直线的斜率为()A.135° B.45°C.1 D.-110.若关于一元二次不等式的解集为,则实数的取值范围是()A. B.C. D.11.已知,,,其中,,,则()A. B.C. D.12.抛物线的准线方程为,则实数的值为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.直线l过点P(1,3),且它的一个方向向量为(2,1),则直线l的一般式方程为__________.14.已知,空间直角坐标系中,过点且一个法向量为的平面的方程为.用以上知识解决下面问题:已知平面的方程为,直线是两个平面与的交线,则直线与平面所成角的正弦值为___________.15.已知向量,,并且、共线且方向相同,则______.16.已知函数,则函数在上的最大值为_______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知圆的圆心在直线,且与直线相切于点.(1)求圆的方程;(2)直线过点且与圆相交,所得弦长为,求直线的方程.18.(12分)如图,在四棱锥中,平面,底面为正方形,且,点在棱上,且直线与平面所成角的正弦值为(1)求点的位置;(2)求点到平面的距离19.(12分)如图所示在多面体中,平面,四边形是正方形,,,,.(1)求证:直线平面;(2)求平面与平面夹角的余弦值.20.(12分)已知椭圆的离心率为,且经过点.(1)求椭圆的方程;(2)经过点的直线与椭圆交于不同的两点,,为坐标原点,若的面积为,求直线的方程.21.(12分)已知函数.(1)求函数的极值;(2)若对恒成立,求实数a的取值范围.22.(10分)等差数列的前项和记为,已知.(1)求的通项公式:(2)求,并求为何值时的值最大.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】分点A在圆内,圆外两种情况,根据中垂线的性质,结合椭圆、双曲线的定义可判断轨迹,再由离心率计算即可求解.【详解】当A在圆内时,如图,,所以的轨迹是以O,A为焦点的椭圆,其中,,此时,,.当A在圆外时,如图,因为,所以轨迹是以O,A为焦点的双曲线,其中,,此时,,.综上可知,.故选:D2、C【解析】根据“回文数”的对称性,只需计算前位数的排法种数即可,确定这四位数的选数的种数,利用分步乘法计数原理可得结果.【详解】根据“回文数”的对称性,只需计算前位数的排法种数即可,首位数不能放零,首位数共有种选择,第二位、第三位、第四位数均有种选择,因此,位的回文数共有个.故选:C.3、D【解析】依题意可得为的重心,由三角形重心的性质可知,由中位线定理可知,再利用向量的加法运算法则即可求出结果【详解】解:依题意可得为的重心,,,分别为边,和的中点,,,故选:D4、A【解析】设,计算出重心坐标后代入欧拉方程,再求出外心坐标,根据外心的性质列出关于的方程,最后联立解方程即可.【详解】设,由重心坐标公式得,三角形的重心为,,代入欧拉线方程得:,整理得:①的中点为,,的中垂线方程为,即联立,解得的外心为则,整理得:②联立①②得:,或,当,时,重合,舍去顶点的坐标是故选:A【点睛】关键点睛:解决本题的关键一是求出外心,二是根据外心的性质列方程.5、C【解析】先得到及递推公式,要想最大,则分两种情况,负数且最小或为正数且最大,进而求出最大值.【详解】①,当时,,当时,②,所以①-②得:,整理得:,所以,或,当是公差为2的等差数列,且时,最小,最大,此时,所以,此时;当且是公差为2的等差数列时,最大,最大,此时,所以,此时综上:的最大值为20故选:C【点睛】方法点睛:数列相关的最值求解,要结合题干条件,使用不等式放缩,函数单调性或导函数等进行求解.6、D【解析】根据空间向量线性运算的几何意义进行求解即可.【详解】,故选:D7、D【解析】根据空间向量的线性运算求解【详解】由已知,故选:D8、A【解析】设椭圆方程为,解方程组即得解.【详解】解:设椭圆方程为,由题意可知,椭圆的面积为,且、、均为正数,即,解得,因为椭圆的焦点在轴上,所以的标准方程为.故选:A.9、D【解析】由斜截式直接看出直线斜率.【详解】由题意得:直线斜率为-1,故选:D10、B【解析】结合判别式求得的取值范围.【详解】由于关于的一元二次不等式的解集为,所以,解得,所以实数的取值范围是.故选:B11、C【解析】先令函数,求导判断函数的单调性,并作出函数的图像,由函数的单调性判断,再由对称性可得.【详解】由,则,同理,,令,则,当;当,∴在上单调递减,单调递增,所以,即可得,又,,由图的对称性可知,.故选:C12、B【解析】由题得,解方程即得解.【详解】解:抛物线的准线方程为,所以.故选:B二、填空题:本题共4小题,每小题5分,共20分。13、【解析】根据直线方向向量求出直线斜率即可得直线方程.【详解】因为直线l的一个方向向量为(2,1),所以其斜率,所以l方程为:,即其一般式方程为:.故答案为:.14、【解析】由题意分别求出这三个平面的法向量,设直线的方向向量为,由直线与平面与的法向量垂直,得出,由向量的夹角公式可得答案.【详解】由,解得,即直线与平面的交点坐标为平面的方程为,可得所以平面的法向量为平面的法向量为,的法向量为设直线的方向向量为,则,即取,设直线与平面所成角则故答案为:15、4【解析】根据空间向量共线基本定理,可设.由坐标运算求得的值,进而求得.即可求得的值.【详解】根据空间向量共线基本定理,可设由向量的坐标运算可得解方程可得所以.故答案为:【点睛】本题考查了空间向量共线基本定理的应用,根据向量的共线定理求参数,属于基础题.16、【解析】利用导数单调性求出的单调性,比较极小值与两端点,的大小求出在上的最大值.【详解】因为,则,令,即时,函数单调递增.令,即时,函数单调递减.所以的单调递减区间为,的单调递增区间为,所以在上单调递减,在上单调递增,所以函数的极小值也是函数的最小值.,两端点为,,即最大值为.故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)或【解析】(1)分析可知圆心在直线上,联立两直线方程,可得出圆心的坐标,计算出圆的半径,即可得出圆的方程;(2)利用勾股定理求出圆心到直线的距离,然后对直线的斜率是否存在进行分类讨论,设出直线的方程,利用点到直线的距离公式求出参数,即可得出直线的方程.【小问1详解】解:过点且与直线垂直的直线的方程为,由题意可知,圆心即为直线与直线的交点,联立,解得,故圆的半径为,因此,圆的方程为.【小问2详解】解:由勾股定理可知,圆心到直线的距离为.当直线的斜率不存在时,直线的方程为,圆心到直线的距离为,满足条件;当直线的斜率存在时,设直线的方程为,即,由题意可得,解得,此时,直线的方程为,即.综上所述,直线的方程为或.18、(1)为棱中点(2)【解析】(1)以点为坐标原点,、、所在直线分别为、、轴建立空间直角坐标系,设,其中,利用空间向量法可得出关于的方程,结合求出的值,即可得出点的位置;(2)利用空间向量法可求得点到平面的距离【小问1详解】解:因为平面,底面为正方形,以点为坐标原点,、、所在直线分别为、、轴建立如下图所示的空间直角坐标系,则、、、、,设,其中,则,设平面的法向量为,,,由,取,可得,由题意可得,整理可得,因为,解得,因此,点为棱的中点.【小问2详解】解:由(1)知为棱中点,即,则,又,设平面的法向量为,由,取,可得,因为,所以,点到平面的距离为.19、(1)证明见解析;(2).【解析】(1)以点为坐标原点,分别以、、为、、轴建立空间直角坐标系,利用空间向量法可证明出直线平面;(2)利用空间向量法可求得平面与平面夹角的余弦值.【小问1详解】证明:因为平面,,以点为坐标原点,分别以、、为、、轴建立空间直角坐标系,则、、、、、,所以,,,设平面的法向量为,依题意有,即,令,可得,,则,平面,因此,平面.【小问2详解】解:由题,,设平面的法向量为,依题意有,即,取,可得,,因此,平面与平面的夹角余弦值为.20、(1);(2)或.【解析】(1)由离心率公式、将点代入椭圆方程得出椭圆的方程;(2)联立椭圆和直线的方程,由判别式得出的范围,再由韦达定理结合三角形面积公式得出,求出的值得出直线的方程.【详解】解:(1)因为椭圆的离心率为,所以.①又因为椭圆经过点,所以有.②联立①②可得,,,所以椭圆的方程为.(2)由题意可知,直线的斜率存在,设直线的方程为.由消去整理得,.因为直线与椭圆交于不同两点,所以,即,所以设,,则,.由题意得,面积,即.因为的面积为,所以,即.化简得,,即,解得或,均满足,所以或.所以直线的方程为或.【点睛】关键点睛:在第二问中,关键是由韦达定理建立的关系,结合三角形面积公式求出斜率,得出直线的方程.21、(1)极大值为,无极小值(2)【解析】(1)求函数的导数,根据导数的正负判断极值点,代入原函数计算即可;(2)将变形,即对恒成立,然后构造函数,利用求导判定函数的单调性,进而确定实数a的取值范围..【小问1详解】对函数求导可得:,可知当时,时,,即可知在上单调递增,在上单调递减由上可知,的极大值为,无极小值【小问2详解】由对恒成立,当时,恒成立;当时,对恒成立,可变形为:对恒成立,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年商铺租赁合同法律风险控制与法律援助计划2篇
- 工程建设合同范本(8篇)
- 2024年度影视后期制作劳务分包合同2篇
- 2024年甲乙丙设备采购合同
- 2024年度影视作品版权登记合同3篇
- 2024年度高低压柜采购融资合同3篇
- 2024年商铺租赁担保合同(含新能源汽车充电)3篇
- 2024年度工程质量监理合同3篇
- 2024版医疗管理与咨询服务合同
- 2024版专业办公设备销售及维护合同范本2篇
- 气相色谱检测器FID-培训讲解课件
- 新教材人教A版高中数学选择性必修第一册全册教学课件
- 《HSK标准教程1》-HSK1-L8课件
- 幼儿园小班绘本:《藏在哪里了》 课件
- 上册外研社六年级英语复习教案
- 替班换班登记表
- 社会保险法 课件
- 阿利的红斗篷 完整版课件PPT
- 桥梁工程挡土墙施工
- 供应商质量问题处理流程范文
- 实验室生物安全手册(完整版)资料
评论
0/150
提交评论